Запросить цену
Процесс передачи тепла называют теплообменом. Аппараты, в которых происходит процесс – теплообменники. Если в процессе участвуют два агента, разделенные перегородкой – это поверхностные рекуперационные аппараты. Происходит процесс смешения теплого и холодного потока контактом – теплообменник смесительный.
Системы теплообмена, зачем нужен теплообменник
Пример смесительного устройства – градирни. Отходящие газы отдают тепло воде, распыляемой из форсунок. В аппаратах, где два агента протекают по отдельным контурам, тепло передается через стенку, поверхность.
Признаком теплообменника является развитая поверхность и подводка двух систем. Это может быть пар-вода, антифриз-вода, вода-вода. Вместо воды в процессе используют химический раствор, вместо пара – нагретые газы.
Применение теплообменников позволяет:
- Использовать остаточное тепло при получении электрической энергии.
- Вести химические процессы в точном режиме, поддерживая температуру теплообменниками.
- Использовать вторичное тепло от энергоносителя для бытовых нужд.
- Поддерживать температуру теплоносителя для бытовых систем отопления в параметрах, соответствующих стандарту.
Принцип работы на примере пластинчатого теплообменника
Этот теплообменник был выбран непросто. Он отличается довольно сложным принципом действия, а потому идеально освещает некоторые общие особенности каждого вида агрегата. Каждая из пластин устройства монтируется к другой части с поворотом равным 180 градусов. В стандартном составе прибора можно встретить до четырёх подобных элементов. В комплекте они создают пакеты, которые отвечают за коллекторный контур. Сам же контур функционирует для создания движения теплоносителя. Конструкция теплообменника подразумевает наличие двух крайних контуров. Именно они не участвуют в процессе создания тепла механизмом.
На сегодняшний день производители техники предлагают пользователю получить два различных вида комплектации.
- Одноходовой. Теплоноситель разделяется и создаёт параллельные потоки. Практически сразу же они стекают в выводной порт.
- Многоходовой. Этот вариант подразумевает использование сложной схемы. Теплообменник начинает своё движение по одинаковому количеству задействованных каналов. Такой принцип работы подразумевает наличие дополнительных элементов (пластин), которые заканчиваются заглушками в отводных портах. Эта особенность добавляет сложности в обслуживание подобных элементов.
Принцип работы теплообменника
Принцип работы поверхностных теплообменников очень прост. Изолированные между собой теплоноситель и теплопотребитель передают друг другу тепло через материал, который находится между ними. В зависимости от конструкции это могут быть трубы или пластины. Для этих целей используются теплопроводные материалы, например, нержавеющая сталь, сплавы и другие материалы. В итоге проходящая через теплообменник среда отдает тепло хладагенту не контактируя с ним. Ключевым принципом работы поверхностных теплообменников является то, что среды не контактируют, т.е не смешиваются.
Установка теплообменника
Используя инструкцию по монтажу, необходимо правильно закрепить теплообменник. Он прижимается к стене за счет специальной консоли или крепежной ленты. Также можно установить теплообменник за счет уголка, который крепится к низу теплообменника. Плюс он завяжется трубами.
Дополнительно нужно смонтировать фильтры. Должен быть хотя бы фильтр грубой очистки на контур теплоэлектростанции. Если подключается к старой отопительной системе, то необходимо два фильтра. Один внизу, другой вверху.
Нужны краны и американки. Последние представляют собой быстроразъемные резьбовые соединения. Как правило, обычная простая американка состоит из четырех частей: двух резьбовых фитингов, накидной гайки и прокладки.
Очень важный момент при монтаже — это диаметр подключения, потому что прибор довольно компактный. В нем небольшой объем теплоносителя. Зазор между пластинами минимальный. Желательно брать такого же диаметра, который нам нужен, или больше. Например, 1 дюйм подключения. Лучше брать с запасом уровень мощности теплообменника. На габариты это не влияет. Буквально больше на один или два сантиметра. Но зато скорость теплосъема значительно увеличивается. Особенно это важно в системах, где теплоэлектростанция дает небольшую температуру. Например, при максимальной подаче температуры воды равной 65-70 °C, надо учесть данный факт, чтобы снять с теплоносителя максимально возможное количество теплоэнергии.
Разновидности поверхностных теплообменников
Простейший т/о – труба в трубе. Холодная трубка с водой проходит в трубе большего сечения, заполненной горячим агентом. При этом поверхность внутренней трубки нагревается и передает тепло воде. Так работают бойлеры. Если трубок много и собраны они в пучок, то получается кожухотрубный теплообменник. Аппараты с трубным пучком, закрепленном с торцов решетками, распространены в промышленности и применяются для бытовой водоподготовки.
Витые теплообменники представляют змеевики, навитые в корпусе. Межтрубное пространство заполняется другим потоком. Аппаратура применяется при высоком давлении одного из агентов.
Двухтрубные теплообменники применяются для передачи тепла в фазах газ-жидкость. Аппараты могут работать под давлением с высокой теплопередачей.
Спиральный т/о
Спиральные теплообменники представляют бочку, в которой лентой-спиралью расположен плоский лабиринт с внутренней полостью. По спирали движется горячий агент, омываемый холодной водой. Конструкция сложная в изготовлении. Но это единственный вид аппаратов для теплообмена агента, содержащего взвеси, пульпу. Откидывающиеся с обеих сторон крышки позволяют легко чистить зазоры.
Пластинчатый теплообменник представляет особую конструкцию греющих труб, собранных в виде плоского элемента их оребренных труб и многоходовым движением воды. Пластины напоминают гармошки. Их недостаток – забиваются накипью при плохой водоподготовке.
Зачем нужен теплообменник в системе отопления? Представьте, что в трубах вода 900. Это приведет к разрыву пластиковых труб, ожогам. В каждом тепловом узле имеется система т/о, позволяющая поддерживать температурные параметры.
Рекуперативные теплообменные аппараты
Рекуперативные теплообменные аппараты — это установки, работающие в периодическом или в стационарном тепловом режиме. Аппараты периодического действия обычно представляют собой сосуды большой вместимости, которые через определенные промежутки времени заполняют обрабатываемым материалом или одним из теплоносителей, нагревают или охлаждают его, а затем удаляют. В стационарном режиме работают, как правило, аппараты непрерывного действия. Конструкции современных рекуперативных теплообменных аппаратов весьма разнообразны и предназначены для работы с теплоносителями типов жидкость-жидкость, пар-жидкость, газ-жидкость.
Значительно чаще используются теплообменные аппараты непрерывного действия, среди которых наибольшее распространение получили кожухотрубчатые теплообменники (рис. 1). Кожухотрубные теплообменники представляют собой аппараты, выполненные из пучков труб, скрепленных при помощи трубных решеток и ограниченных кожухами и крышками. Трубное и межтрубное пространства в аппарате разобщены, а каждое из них разделено перегородками на несколько ходов.
В кожухотрубчатых теплообменниках обычно применяют трубы внутренним диаметром не менее 12 мм и не более 38 мм, так как при увеличении диаметра труб значительно снижается компактность теплообменника и возрастает его металлоемкость.
Длина трубного пучка колеблется от 0,9 до 5…6 м. Толщина стенки труб — от 0,5 до 2,5 мм. Трубные решетки служат для закрепления в них труб при помощи развальцовки, запайки или сальниковых соединений. Кожух аппарата представляет собой цилиндр, сваренный из одного или нескольких стальных листов. Он снабжен фланцами, к которым болтами крепятся крышки. Толщина стенки кожуха определяется максимальным давлением рабочей среды и диаметром аппарата, но не делается тоньше 4 мм. Из-за различия температур греющей и нагреваемой сред кожух и трубы работающего аппарата также имеют различные температуры. Для компенсации напряжений, возникающих в результате различия температурных расширений труб и кожуха, применяют линзовые компенсаторы, U- и W-образные трубы, теплообменники с плавающими камерами (рис. 1).
Рис. 1. Кожухотрубчатые рекуперативные теплообменные аппараты: а, б — с жестким креплением труб в трубных решетках; в — с линзовыми компенсаторам корпусе; г, д — с U- и W-образными трубками; е — с нижней плавающей распределительной камерой
С целью интенсификации теплообмена увеличивают скорость теплоносителей с низким коэффициентом теплоотдачи, для чего теплообменники по теплоносителю, проходящему в трубах, делают двух-, четырех- и многоходовыми, а в межтрубном пространстве устанавливают сегментные или концентрические поперечные перегородки (рис. 1).
Если перепады давления между греющей и нагреваемой средами в аппарате достигают 10 МПа и более, применяют змеевиковые теплообменники с витыми трубами (рис. 2, а), концы которых вваривают в распределительные коллекторы или в меньшие по размерам, чем в кожухотрубных аппаратах, трубные решетки. Эти аппараты более компактны, а также позволяют обеспечить более высокие скорости и коэффициенты теплоотдачи от теплоносителя, движущегося в трубах, в случае малых его расходов.
Рис. 2. Змеевиковые и секционные рекуперативные теплообменные аппараты: а — с витой трубчатой поверхностью нагрева (змеевиковый); б — секционный; в — «труба в трубе»
Секционные теплообменники (рис. 2, б), как и кожухотрубчатые, применяют в самых различных областях. Они характеризуются меньшим, чем в кожухотрубчатых аппаратах, различием скоростей в межтрубном пространстве и в трубах при равных расходах теплоносителей. Из них удобно подбирать необходимую площадь поверхности нагрева и изменять ее в случае необходимости. Однако у секционных теплообменников велика доля дорогостоящих элементов — трубных решеток, фланцев, переходных камер, калачей, компенсаторов и т. п.; выше расход металла на единицу поверхности нагрева, больше длина пути теплоносителей, а следовательно, больше расход электроэнергии на их прокачку. В случае малых тепловых мощностей секции выполняют по типу теплообменников «труба в трубе», у которых в наружную трубу вставлена единственная внутренняя труба меньшего диаметра (рис. 2, в).
Разборные многопоточные теплообменники «труба в трубе» нашли применение в технологических установках заводов нефтяной, химической, газовой и других отраслей промышленности при температурах от — 40 до +450 °С и давлениях до 2,5…9,0 МПа. Для улучшения теплообмена трубы могут иметь продольные ребра или поперечную винтовую накатку.
Спиральные теплообменники—аппараты, в которых каналы для теплоносителей образованы двумя свернутыми в спирали на специальном станке листами (рис. 3). Расстояние между ними фиксируется приваренными бобышками или штифтами. В соответствии с ГОСТ 12067—80 навивку спиральных теплообменников производят из рулонной стали шириной от 0,2 до 1,5 м с поверхностями нагрева от 3,2 до 100 м2 при расстоянии между листами от 8 до 12 мм и толщине стенок 2 мм для давления до 0,3 МПа и 3 мм — до 0,6 МПа. Зарубежные фирмы изготовляют специальные теплообменники из рулонного материала (углеродистых и легированных сталей, никеля, титана, алюминия, их сплавов и некоторых других) шириной от 0,1 до 1,8 м, толщиной от 2 до 8 мм при расстоянии между листами от 5 до 25 мм. Поверхности нагрева составляют от 0,5 до 160 м2.
Рис. 3. Спиральный теплообменник: а — принципиальная схема спирального теплообменника; б — способы соединения спиралей с торцевыми крышками
Спиральные теплообменники устанавливают по штуцерам горизонтально и вертикально. Их часто монтируют блоками по два, четыре, восемь аппаратов и применяют для нагревания и охлаждения жидкостей и растворов. Вертикальные аппараты используют также для конденсации чистых паров и паров из парогазовых смесей. В последнем случае на коллекторе для конденсата имеется штуцер для удаления неконденсирующегося газа.
Пластичные теплообменники (рис. 4, а, б) имеют щелевидные каналы, образованные параллельными пластинками. В простейшем случае пластины могут быть плоскими. Для интенсификации теплообмена и повышения компактности пластинам при изготовлении придают различные профили (рис. 4, в, г), а между плоскими пластинами помещают профилированные вставки. Первые профилированные пластины изготовлялись из бронзы фрезерованием и отличались повышенной металлоемкостью и стоимостью. В настоящее время пластины штампуют из листовой стали (углеродистой, оцинкованной, легированной), алюминия, мельхиора, титана и других металлов и сплавов. Толщина пластин — от 0,5 до 2 мм. Поверхность теплообмена одной пластины — от 0,15 до 1,4 м2, расстояние между пластинами — от 2 до 5 мм.
Рис. 4. Пластинчатые теплообменники: а — пластинчатый воздухоподогреватель; б — разборный пластинчатый теплообменник для тепловой обработки жидких сред; в — гофрированные пластины; г — профили каналов между пластинами; I, II — вход и выход теплоносителя
Теплообменники делаются:
а) разборными;
б) неразборными.
В разборных аппаратах герметизацию каналов обеспечивают с помощью прокладок на основе синтетических каучуков. Их целесообразно применять при необходимости чистки поверхностей с обеих сторон. Они выдерживают температуры в диапазоне от -20 до 140…150 °С и давления не более 2…2,5 МПа. Неразборные пластинчатые теплообменники выполняют сварными. Они могут работать при температурах до 400 °С и давлениях до 3 МПа. Из попарно сваренных пластин изготовляют полуразборные теплообменники. К аппаратам этого же типа относятся блочные, которые набирают из блоков, образованных несколькими сваренными пластинами. Пластинчатые теплообменные аппараты применяют для охлаждения и нагревания жидкостей, конденсации чистых паров и паров из парогазовых смесей, а также в качестве греющих камер выпарных аппаратов.
Ребристые теплообменники (рис. 5) применяются в тех случаях, когда коэффициент теплоотдачи для одного из теплоносителей значительно ниже, чем для второго. Поверхность теплообмена со стороны теплоносителя с низким коэффициентом теплоотдачи увеличивают по сравнению с поверхностью теплообмена со стороны другого теплоносителя. Из рис. 5 (е…и) видно, что ребристые теплообменники изготовляют самых различных конструкций. Ребра выполняют поперечными, продольными, в виде игл, спиралей, из витой проволоки и т. д.
Трубы с наружным и внутренним продольным оребрением изготовляют методами литья, сварки, вытяжкой из расплава через фильеру, выдавливанием металла, нагретого до пластического состояния, через матрицу. Для закрепления ребер на трубах и пластинах используют также гальванические покрытия, покраску. Для повышения эффективности ребер их изготовляют из более теплопроводных, чем стальные трубы, материалов: меди, латуни, чаще из алюминия. Однако из-за нарушения контакта между ребром или ребристой рубашкой и стальной несущей трубой биметаллические трубы применяют при температурах не выше 280 °С, трубы с навивным оребрением — до 120 °С; навивные завальцованные в канавку ребра выдерживают температуру до 330 °С, но быстро корродируют у основания в загрязненном воздухе и других агрессивных газах.
Рис. 5. Типы ребристых теплообменников: а — пластинчатый; б — чугунная трубка с круглыми ребрами; в — трубка со спиральным оребрением; г — чугунная трубка с внутренним оребрением; д — плавниковое оребрение трубок; е — чугунная трубка с двухсторонним игольчатым оребрением; ж — проволочное (биспиральное) оребрение трубок; з — продольное оребрение трубок; и — многоребристая трубка
От чего зависит эффективность теплообменника
Кожухотрубный т/о
Поверхностный теплообмен происходит всегда через стенку. При этом возникают потери тепла. Чем тоньше перегородка, тем меньше потери. Новый т/о кожухотрубный имеет кпд 75%, но с зарастанием внутренней и верхней поверхности осадком, эффективность аппарата снижается. Он не может удерживать температурный режим. Поэтому аппараты имеют съемный пучок, который прочищают под высоким давлением специальным пистолетом.
Пластинчатые аппараты имеют кпд 90%, но щели между пластинами забиваются, требуется чистка. Для чистки оборудование разбирают. Важно установить на место сетчато-магнитный фильтр, который препятствует образованию осадка. Пластинчатые теплообменники можно подключать к автоматизированному управлению.
Пластинчатый разборный т/о
Эффективность процесса зависит от схемы подключения. Полнее теплоотдача у противоточного аппарата, когда потоки движутся навстречу друг другу.
Чем тоньше перегородка, тем лучше идет процесс. Но для аппаратов, работающих под давлением, толщина стенок зависит от способности выдерживать нагрузки на стенки. Если нельзя утоньшить стенки трубок необходимо увеличить поверхность нагрева, сделать аппарат длиннее.
Каждый т/о изготовлен в соответствии с теплотехническим расчетом, имеет паспорт и рассчитан для работы с определенным теплоносителем.
Системы и особенности теплообмена: задача теплообменника
Пластинчатые теплообменники можно использовать в различных системах на промышленных объектах и жилых зданиях.
В многоэтажных домах преимущество отдается разборным аппаратам
В многоквартирном доме
В подключении систем отопления и горячего водоснабжения чаще участвует стандартный разборный аппарат. Причин его установки в многоквартирном доме несколько:
- срок эксплуатации — от 25 лет, однако уплотнения необходимо менять каждые 5-10 лет;
- устройство легко разбирается и поддается ремонту;
- мощность можно регулировать самостоятельно, изменив количество пластин.
Такой вариант теплообменника для отопления подходит и для промышленных зон.
Самостоятельный ремонт теплового оборудования недопустим
В частном доме
В частном доме рекомендовано использовать паяный теплообменник по нескольким причинам:
- подходит для агрессивной среды;
- срок службы аппарата — 15 лет;
- гарантирует высокий КПД, благодаря минимальной потере тепловой энергии и высокому уровню теплоотдачи;
- так как в конструкции нет уплотнений, протечки невозможны.
Сборка устройства достаточно проста и не занимает много времени.
Оборудование требует регулярную проверку уплотнителей и чистку от накипи
Кожухотрубные теплообменники
Кожухотрубные теплообменники предназначены для нагрева или охлаждения, испарения или конденсации различных жидких и парообразных сред в различных технологических процессах.
Рис. 21. Устройство кожухотрубного теплообменника, его основные элементы и принципиальная схема движения теплоносителей в нем
Обычно кожухотрубные теплообменники используются при давлениях теплоносителя более 2,5 МПа, а при меньших давлениях применять пластинчатые теплообменники намного эффективнее.
Типы теплообменного оборудования
- Поверхностные. Среды обмениваются теплом через стенки теплопроводного материала. От первичного теплоносителя тепло передается теплообменной поверхности и далее к вторичному теплоносителю. Контактные поверхности – пластины или трубки.
- Смесительные. Тепло передается непосредственно между смешивающимися средами. Такие установки конструктивно проще поверхностных, но подходят только для тех случаев, когда теплоносители можно смешивать. К ним относятся барботеры, градирни, сопловые подогреватели.
Поверхностные теплообменные аппараты делятся на регенеративные и рекуперативные:
- Регенеративные (регенераторы). Теплота передается путем переменного контакта сред разной температуры с одной поверхностью устройства. Движение теплоносителей периодическое: теплый поток — холодный поток.
- Рекуперативные. Среды обмениваются теплом непрерывно, через разделяющую поверхность. Направление потоков одинаковое или противоположное, но трассы не меняются попеременно (в отличие от регенераторов), процесс теплообмена носит стационарный характер.
В простых ситуациях, когда не нужна высокая теплопередача, актуальны одноходовые аппараты – они конструктивно проще, реже обслуживаются, меньше загрязняются. Многоходовые установки используются, когда нужно повысить общий коэффициент теплопередачи. Это достигается за счет повышения площади контакта сред с теплообменной поверхностью.
Смесительные теплообменники
Смесительный теплообменник (или контактный теплообменник) — это теплообменник, предназначенный для осуществления тепло- и массообменных процессов путем прямого смешивания сред (в отличие от поверхностных теплообменников) (рис. 36- 38). Наиболее распространены пароводяные струйные аппараты ПСА — теплообменники струйного типа, использующие в своей основе струйный инжектор. Смесительные теплообменники конструктивно устроены проще, нежели поверхностные, более полно используют теплоту. Однако пригодны они лишь в случаях, когда по технологическим условиям производства допустимо смешение рабочих сред.
Рис. 36. Схемы смесительных теплообменников: а — струйный смеситель; б — скруббер (оросительный теплообменник)
Рис. 37. Струйный смеситель (слева) и градирни (справа)
Рис. 38. Принципы работы оросительных теплообменников
Регенеративные теплообменники
Регенеративным называется теплообменник, в котором одна и та же поверхность поочередно омывается то горячим, то холодным теплоносителями. При соприкосновении с горячим теплоносителем стенка аккумулирует теплоту, а затем отдает ее холодному теплоносителю. Для удовлетворительной работы теплообменника его рабочие стенки должны обладать значительной теплоемкостью.
Режим теплообмена в регенеративных теплообменниках нестационарный. Чтобы процесс теплообмена протекал непрерывно при одинаковой продолжительности периода нагрева и охлаждения, такой теплообменник должен иметь две параллельно работающие секции.
Примером регенеративного теплообменника являются роторные теплообменники, которые широко применяются в системах приточновытяжной вентиляции. Принцип их работы показан на рис. 33.
Рис. 33. Принцип работы регенеративных роторных теплообменников
Рис. 34. Регенеративные теплообменники
Примером регенеративного теплообменника может служить также регенеративный воздухоподогреватель (рис. 35), в котором в верхней камере непрерывно движущаяся насадка нагревается теплотой топочных газов, а в нижней она охлаждается воздухом, который нагревается до необходимой температуры.
Рис. 35. Регенеративный теплообменник для нагрева воздуха топочными газами: 1 — газовая камера; 2 — воздушная камера; а — подвод горячих газов из топки, б — отвод отработанных газов; в — подвод холодного воздуха; г — отвод горячего воздуха; е — подача сыпучей насадки; д — отвод сыпучей насадки и возврат остывшей насадки
Спиральные теплообменники
Спиральный теплообменник был изобретен в двадцатых годах ХХ века шведским инженером Розенбладом для применения в целлюлознобумажной промышленности. Эти теплообменники впервые позволили обеспечить надежную теплопередачу между средами, содержащими твердые включения. В 70-х годах конструкция спиральных теплообменников была радикально изменена и улучшена, и приобрела большие преимущества по сравнению с конструкцией Розенблада.
Два или четыре длинных металлических листа укладывают спиралью вокруг центральной трубы, образуя два или четыре однопроточных канала. Чтобы обеспечить постоянную величину зазоров, к одной стороне листов привариваются разделительные шипы. Центральная труба при помощи специальной перегородки разделена на две камеры, которые образуют входной и выходной коллектора. Скрученные спирали помещаются в цилиндрический кожух. Внешние концы спиральных листов привариваются вдоль образующей обечайки. Для выхода каналов наружу в местах фиксации краев каналов в кожухе просверливаются отверстия, которые герметично закрываются входным и выходным коллекторами с присоединительными патрубками.
Движение потоков в спиральных теплообменниках происходит по криволинейным каналам, близким по форме к концентрическим окружностям. Направление векторов скоростей движения потоков постоянно претерпевают изменение. Геометрия каналов и разделительные шипы создают значительную турбулентность уже при низких скоростях потоков, при этом улучшается теплопередача и уменьшается загрязнение.
Это обеспечивает компактность конструкции спиральных теплообменников, которые могут быть интегрированы с любой технологической линией, что значительно сокращает затраты на установку.
Рис. 22. Спиральные теплообменники
Виды теплообменников
Теплообменные агрегаты могут быть различных типов. Их отличие заключается в способе передачи тепловой энергии. Выделяют следующие виды представленных аппаратов:
- Смесительные. В них передача тепловой энергии осуществляется благодаря смешению двух рабочих сред. По конструкции эти устройства намного проще, чем поверхностные. Использовать такие агрегаты получается только при условии возможности смешивания носителей тепла. Это условие и служит главным недостатком смесительных приборов.
- Поверхностные. В них осуществляется обмен энергией между рабочими носителями тепла посредством стенок разделителя. Такие устройства подразделяются на рекуперативные и регенеративные. В рекуперативных при передаче тепловой энергии через разделительную стенку поток тепла движется в одном направлении в каждой точке стенки. Для регенеративного теплообменного аппарата свойственно то, что носитель тепла при попеременном касании одной и той же поверхности, время от времени изменяет направление потока.
Устройство и принцип работы
Современные модели теплообменного устройства имеют несколько частей. Для каждой характерна своя важная роль:
- неподвижная плита – к ней крепят все подводимые патрубки;
- прижимная плита;
- пластины, оснащенные вставленными прокладками уплотнительного типа;
- верхняя и нижняя направляющие;
- задняя стойка;
- шпильки с резьбой.
Такая уникальная конструкция теплообменного устройства позволяет достичь максимально эффективной компоновки всей поверхности эксплуатируемого агрегата.