Об особенностях выбора циркуляционного агрегата
Система отопления с принудительной циркуляцией будет работать исправно при условии, что производительность и некоторые другие параметры насоса будут правильно подобраны. В первую очередь следует уточнить, какой объем теплоносителя сможет перекачать изделие за конкретный промежуток времени.
Изначально приобретать модель насоса с большим запасом эксплуатационных характеристик нецелесообразно. Во-первых, стоимость прибора окажется слишком высокой, поэтому придется потратить существенную часть бюджета. Во-вторых, устройство будет потреблять лишнюю энергию, так как при повышении мощности увеличивается и ее расход.
Рекомендуется подключать к насосу резервное питание
В последнюю очередь при выборе следует учитывать факторы комфорта и качественных характеристик. Для спокойного проживания лучше, конечно же, приобрести прибор, не создающий много шума и являющийся долговечным. Таким требованиям обычно отвечает продукция проверенных производителей, которые на рынке существуют длительное время.
Прибор внедрен в отопительную систему частного дома
Для расчёта существует распространённая формула:
Q = N / (T2-T1) х К.
В этой формуле:
- Q обозначает производительность,
- T1 и T2 — температура теплоносителя в трубах на входе котла и на выходе, соответственно. Температура жидкости на выходе обычно составляет 90°С, на входе — 70 °С. N — это мощность котла.
- К— коэффициент, который учитывает теплоёмкость воды или другого теплоносителя. Для воды эта цифра составляет 1,16.
Кроме параметров производительности циркуляционного насоса, нужно учитывать и другие факторы: энергопотребление, рабочее давление, шумность, тип, фирму-производителя. Также при расчёте надо взять во внимание гидравлическое сопротивление системы, которое будет отличаться, в зависимости от количества радиаторов отопления, наличия конвекторов, системы тёплого пола.
Рассчитывать требуемые параметры вручную не всегда удобно. Чтобы сделать это проще и быстрее при помощи специального калькулятора. Ниже есть калькулятор расчета производительности циркуляционного насоса. С его помощью можно учесть все необходимые параметры и сделать расчёт за считанные минуты.
Расчет высота напора
На данный момент посчитаны главные данные для подбора циркуляционного насоса, далее необходимо вычислить напор теплоносителя, это нужно для успешной работы всего оборудования. Это можно сделать так: Hpu=R*L*ZF/1000. Парметры:
- Hpu это мощность или высота напора насоса, которая измеряется в метрах;
- R обозначается как потеря в трубах подачи, Па/М;
- L это протяженность контура отопливаемого помоещения, измерения проводятся в метрах;
- ZF служит для представляения коэффициента сопротивления (гидрав).
Диаметр труб может сильно отличиться, поэтому параметр R имеет весомый диапазон от пятидесяти до ста пятидесяти Па на метр, для подобранного в примере места, требуется учитывать самый высокий показатель R. Корректную протяженность системы определить не так-то и просто, она в полной мере отталкивается от размера отапливаемого помещения. Все показатели дома суммируются, а потом умножаются на 2. При площади дома в триста метров в квадрате, возьмем, к примеру длину дома в тридцать м, ширину в десять м, а высоту в два с половиной метра. В таком исходе: L=(30+10+2.5)*2, что равно 85 метрам. Легче всего коэфф. сопротивления ZF определить так: при наличии термо-статичного вентиля, он равняется — 2.2 м, при отсутствии — 1.3. Берем самую большую. 150*85*2.2/10000=85 метров.
Система водяного теплого пола: как устроена?
Система включает в свой состав следующие обязательные компоненты:
- источник тепла (котел, стояк централизованного отопления);
- теплоноситель (вода, тосол, масло и др.);
- трубы обогрева;
- утеплитель;
- управляюще-распределительное устройство;
- насос циркуляционный.
По разветвленной сети трубопроводов, расположенных на полу под покрытием, циркулирует теплоноситель. Источником тепла обычно выступает газовый котел.
Использование водяных полов в квартирах с источником тепла, подающимся централизованно по стояку, допускается в домах с поквартирной горизонтальной разводкой отопления.
Схема обустройства теплого пола
С целью одинакового прогрева полов трубы размещают на не большом расстоянии между собой (100-200 мм). У стен расстояние между трубами оставляют меньше чем в центре помещения. Раскладка труб проводится по двум схемам:
- змейкой – ассоциируется с трассой слалома или зигзагом;
- улиткой – напоминает спираль.
Теплоноситель, прогретый до температуры 35-45 градусов, проходя по трубопроводу, теряет температуру. Оптимальная длина трубопровода (петли) до 120 м. Этого хватает для покрытия помещения площадью до 20 м2. Для больших помещений монтируют несколько трубопроводов. К источнику тепла их подсоединяют параллельно через коллектор, который располагают в специальном шкафу. В нем же устанавливают запорную и управляюще-регулирующую аппаратуру (манометры, термостаты, сливные краны, датчики расхода, воздушные клапаны), а также насосы.
Рекомендации по подбору циркуляционного насоса. Расчет напора и производительности.
Производительность насоса Q
Для расчета производительности насоса необходимо знать один из следующих параметров: а) отапливаемая площадь б) мощность источника тепла А. Если известна отапливаемая площадь, сначала надо рассчитать необходимую мощность источника тепла по формуле:
Qn = (Sn x Qуд) / 1000
, где
Qn — необходимая тепловая мощность, в кВт Sn — отапливаемая полезная площадь здания, и м2 Qуд — удельная теплопотребность здания 70 Вт/м2 – для здания с более чем 2-мя квартирами 100 Вт/м2 – для отдельно стоящих зданий с 1-2 квартирами А, Б. Расчет производительности насоса производиться по формуле:
Qн = Qn / 1,16 х (tr — tx)
, где
Qн — подача насоса, в м3/ч Qn — необходимая тепловая мощность, в кВт 1,16 — удельная теплоёмкость воды, в Вт х час/кг х оК tr — температура воды на выходе из котла, в оС tx — температура воды на входе в котел, в оС Разница температур Δt = tr – tx зависит от типа отопительной системы Δt = 20оК для стандартных отопительных систем Δt = 10оК для низкотемпературных отопительных систем Δt = 5оК для системы теплых полов
Напор насоса Н
Самое важное замечание: напор циркуляционного насоса зависти не от высоты здания, а от гидравлического сопротивления отопительной сети. Поэтому необходимо рассчитать это сопротивление. Расчет производится по формуле:
Hн = (R x I + ΣZ) / (ρ x g)
, где
Hн — напор насоса, в м Если речь идет о старом здании, чаще всего можно говорить о приблизительном расчете параметров, поскольку документация вряд ли сохранилась. В этом случае расчет лучше вести по другой формуле:
Hн = (R x I + ΣZ) / (1000)
, где
Hн — напор насоса, в м R – потери на трение в прямой трубе, в Па/м I – общая длина трубопровода до самого дальнего нагревательного элемента, в м SF – коэффициенты запаса для 1,3 – фитингов / арматуры 1,7 – термостатических вентилей 1,2 – смесителя / устройства, предотвращающего естественную циркуляцию Опытным путем установлено, что в прямой трубе трубопровода возникает сопротивление порядка R = 100:150 Па/м. Это соответствует необходимому напору насоса в 1,0:1,5 см на метр трубопровода. Определяется самая неблагоприятная ветка трубопровода между источником тепла и самым удаленным радиатором. Длина, ширина и высота складываются и умножаются на 2: I = 2 x (a + b +h) Для определения сопротивления всех дополнительных частей трубопровода можно использовать коэффициенты запаса ZF, исчисленные опытным путем. Значения этих коэффициентов для фитингов и арматуры составляют примерно 30% от потерь в прямой трубе, то есть: ZF1 = 1,3 Если в системе установлены термостатические вентили, то значение общего коэффициента запаса будет следующим: ZF = ZF1 x ZF2 = 1,3 x 1,7 = 2,2 Если же в системе присутствует смеситель, то при расчетах следует учитывать дополнительный коэффициент запаса, то есть: ZF = ZF1 x ZF2 x ZF3 = 1,3 x 1,7 x 1,2 = 2,6
Выбор насоса.
После расчетов 1 и 2 должны получиться значения производительности и напора, определяющие рабочую точку, по которой выбирается модель насоса. У каждого насоса есть своя гидравлическая характеристика. Наиболее оптимальная работа насоса в средней трети графика (очень часто эта зона выделена толстой линией). Очень редко бывает, когда расчетная точка совпадает с гидравлической характеристикой насоса. аще всего эта точка лежит между характеристиками двух насосов. При выборе конкретной модели насоса не нужно выбирать саамы мощный, поскольку, даже менее мощный насос полностью обеспечит систему отопления.
Количество скоростей циркуляционного насоса
Скорости насоса – это способность прибора менять производительность. Узнать о наличии режимов просто – в описании будет указана не одна мощность, а несколько (обычно три).
Точно также в трёх вариантах указывают и скорость вращения и производительность. Например: 70/50/35 Вт (мощность), 2200/1900/1450 об/мин (скорость вращения), напор 4/3/2 м.
Существуют модели, которые автоматически меняют скорость работы (а значит, и производительность), в зависимости от температуры окружающей среды.
Для смены режима на корпусе насоса имеется специальный переключатель. Ручные модели советуется выставлять на максимальный режим мощности и убавлять его в случае необходимости. В автоматических приборах нужно просто снять регулятор с блокировки.
Наличие скоростных режимов – не только для повышения комфорта. Это оправдано и экономически. До 40% энергии способен сберечь режимный прибор против обычного.
Делаем смесительный узел своими руками
При сооружении тёплых водяных полов можно подобрать готовую модель насосно-смесительного узла. Но если вы хотите сделать бюджетный узел своими руками, то мы расскажем подробно пошаговый процесс.
Прежде чем начать работу, необходимо запастись: сетчатым фильтром, трёхходовым термостатическим и обратным клапаном, двумя термометрами, циркуляционным насосом, воздухоотводчиком, двумя тройниками, двумя дренажными и шаровыми кранами. А также, коллекторами — для подающего трубопровода с шаровыми кранами и для обратки с регуляторами.
Помимо этого, количество петель тёплого водяного пола должно равняться выходам на коллекторе.
Пошаговая инструкция сборки:
К шаровому подающему крану монтируем сетчатый фильтр, после которого устанавливаем уголок.
К подаче прикручиваем фильтр
К уголку прикручиваем трёхходовой смесительный термостатический клапан.
Устанавливаем трёхходовой клапан
К смесителю, к стороне где будет подсоединяться обратка, прикручиваем обратный клапан — без него узел будет работать не корректно.
Подсоединяем обратный клапан
К обратке, и к среднему выходу смесительного узла, монтируем термометры.
Закрепляем термометры
К термометру, идущему от подающей трубы, присоединяем циркуляционный насос. Необходимо, чтобы прямой отрезок расстояния от термометра до насоса, и от насоса до коллектора были равны, и составляли 10 диаметров подводящей трубы.
Далее монтируем коллекторы, которые зафиксированы на специальном кронштейне. К насосу подсоединяем подающую гребёнку с шаровыми кранами, коллектор обратки будет с регулирующими вентилями.
Монтируем коллекторную группу
К торцевому выходу подающего и обратного коллектора прикручиваем тройники, к которым крепится воздухоотводчик.
Подсоединяем тройники
Устанавливаем воздухоотводчик.
На боковые выходы обоих тройников устанавливаем по дренажному шаровому крану. Они необходимы для заполнения или слива системы.
К обратному коллектору подсоединяем отрезок трубу из полипропилена или металлопластика. Его размер должен равняться расстоянию от подающего коллектора до термометра.
К обратке присоединяем отрезок трубу
Между этим отрезком трубы и термометром обратки размещаем второй сетчатый фильтр.
Устанавливаем второй фильтр
К обратному клапану прикручиваем шаровой кран.
Подсоединяем кран обратки
Получилась простая, дешёвая модель самодельного насосно-смесительного узла для тёплого пола.
Готовый узел
Знания, которые нужны для расчета
Чтобы верно понимать и производить полный алгоритм расчета циркуляционного насоса системы отопления, следует уметь правильно отталкиваться от определенного значения, правильность которого, не будет вызывать сомнений. Чтобы это сделать, нужно в первую очередь открыть паспорт помещения, в котором будет проходить установка оборудования и узнать его общую площадь. Для примера расчета будем брать частный дом, с общей площадью 300 квадратных метров.
Далее, нужно определить все значения, которые понадобятся для расчета, это 3 главных параметра:
- Qn показывает мощность тепла (киловатты);
- Qpu показывает мощность движения насоса (точнее, данная величина будет показывать V подачи теплоносителя, под подобранное помещение, измерения происходят в метрах в час)
- Hpu величина показывает мощность напора, который нужен для преодолевания разнонаправленных систем
Для расчета тепла понадобятся все эти величины. Для каждого дома, есть специальные нормы, которыми должен обладать источник обогрева. Иначе говоря, некоторая норма формул, которая используется в дальнейшем.
Для того, чтобы узнать мощность, есть формула: Qn=Sn*Qyd/100.
Известна общая площадь предполагаемого помещения, это триста квадратных метров. Второй же показатель, зависит только от вида постройки: в многоквартирном доме показатель равен семидясети Вт на метр в квадрате, в случае, использованном на примере (отдельно стоящее здание) это сто Вт на метр в квадрате. Переведя все значения в формулу, получится: 300*100/1000=30КВТ. В итоге получается, что мощность отапливающего прибора помещения будет равна тридцать киловатт.
Есть и другой метод, с помощью которого можно произвести расчет. Величина помещения, которое отапливается, а также нужную мощность отопительного агрегата можно найти ниже:
- 5 КВТ — V помещения устаревшего здания 70-150 кв.м, V помещения нового здания 60-110 кв.м;
- 10 КВТ — V помещения устаревшего здания 150-300 кв.м, V помещения нового здания 130-220 кв.м;
- 20 КВТ — V помещения устаревшего здания 320-600 кв.м, V помещения нового здания 240-400 кв.м;
- 30 КВТ — V помещения устаревшего здания 650-1000 кв.м, V помещения нового здания 460-650 кв.м;
- 40 КВТ — V помещения устаревшего здания 1050-1300 кв.м, V помещения нового здания 650-890 кв.м;
- 50 КВТ — V помещения устаревшего здания 1350-1600 кв.м, V помещения нового здания 900-1100 кв.м;
- 60 КВТ — V помещения устаревшего здания 1650-2000 кв.м, V помещения нового здания 1150-1350;
Формула V здания или квартиры, V вычисляется произведением его H на S. (V=S*H):
- V — объем всего помещения;
- S — суммарная площадь, которая отапливается;
- H — высота помещения;
В выбранном для примера варианте, высота равна 2.5 метра. Полная суммарная площадь в таком случае будет равна по формуле. 300*2.5=750 метров в кубе. Исходя из данных выше, это как раз 30 киловатт.