Технологические трубопроводы предприятий и систем жизнеобеспечения населенных пунктов транспортируют различные среды с разными параметрами. Эти параметры, в частности, температура, должны сохраняться независимо от воздействия условий окружающей среды, а для этого необходима теплоизоляция. Ее толщину определяет расчет, который базируется на требованиях нормативных документов.
Теплоизоляция трубопровода должна сохранять температуру в трубе независимо от воздействия на нее условий окружающей среды.
Характеристики прокладки сетей и нормативной методики вычислений
Выполнение вычислений по определению толщины теплоизоляционного слоя цилиндрических поверхностей — процесс достаточно трудоемкий и сложный. Если вы не готовы доверить его специалистам, следует запастись вниманием и терпением для получения верного результата. Самый распространенный способ расчета теплоизоляции труб — это вычисление по нормируемым показателям тепловых потерь. Дело в том, что СНиПом установлены величины потерь тепла трубопроводами разных диаметров и при различных способах их прокладки:
Схема утепления трубы.
- открытым способом на улице;
- открыто в помещении или тоннеле;
- бесканальным способом;
- в непроходных каналах.
Суть расчета заключается в подборе теплоизоляционного материала и его толщины таким образом, чтобы величина тепловых потерь не превышала значений, прописанных в СНиПе. Методика вычислений также регламентируется нормативными документами, а именно — соответствующим Сводом Правил. Последний предлагает несколько более упрощенную методику, нежели большинство существующих технических справочников. Упрощения заключены в таких моментах:
- Потери теплоты при нагреве стенок трубы транспортируемой в ней средой ничтожно малы по сравнению с потерями, которые теряются в слое наружного утеплителя. По этой причине их допускается не учитывать.
- Подавляющее большинство всех технологических и сетевых трубопроводов изготовлено из стали, ее сопротивление теплопередаче чрезвычайно низкое. В особенности если сравнивать с тем же показателем утеплителя. Поэтому сопротивление теплопередаче металлической стенки трубы рекомендуется во внимание не принимать.
Надо ли утеплять трубы в подвале дома
Надо ли утеплять полипропиленовые трубы в подвале? Если вы не провели при строительстве утепление ленточного фундамента. то защитить коммуникации от потерь тепла просто необходимо. Если загородный дом редко эксплуатируется в зимний период, то коммуникации могут промерзнуть, независимо от того, какой материал используется для трубы водопровода – металлопластик, труба пнд или оцинкованная сталь.
При входе холодной водопроводной трубы в теплое помещение на ней всегда будет образовываться конденсат. Если труба будет изолирована, то вы защитите помещение от возможного появления сырости. Трубы отопления в подвале также нуждаются в теплоизоляции, чтобы не тратить лишнее тепло в данном помещении, а перенаправить его по максимуму в жилые помещения, снизив свои затраты на отопление.
Методика просчета однослойной теплоизоляционной конструкции
Основная формула расчета тепловой изоляции трубопроводов показывает зависимость между величиной потока тепла от действующей трубы, покрытой слоем утеплителя, и его толщиной. Формула применяется в том случае, если диаметр трубы меньше чем 2 м:
Формула расчета теплоизоляции труб.
ln B = 2πλ [K(tт — tо) / qL — Rн]
В этой формуле:
- λ — коэффициент теплопроводности утеплителя, Вт/(м ⁰C);
- K — безразмерный коэффициент дополнительных потерь теплоты через крепежные элементы или опоры, некоторые значения K можно взять из Таблицы 1;
- tт — температура в градусах транспортируемой среды или теплоносителя;
- tо — температура наружного воздуха, ⁰C;
- qL — величина теплового потока, Вт/м2;
- Rн — сопротивление теплопередаче на наружной поверхности изоляции, (м2 ⁰C) /Вт.
Таблица 1
Условия прокладки трубы | Значение коэффициента К |
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на скользящих опорах при диаметре условного прохода до 150 мм. | 1.2 |
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на скользящих опорах при диаметре условного прохода 150 мм и более. | 1.15 |
Стальные трубопроводы открыто по улице, по каналам, тоннелям, открыто в помещениях на подвесных опорах. | 1.05 |
Неметаллические трубопроводы, проложенные на подвесных или скользящих опорах. | 1.7 |
Бесканальный способ прокладки. | 1.15 |
Значение теплопроводности утеплителя λ является справочным, в зависимости от выбранного теплоизоляционного материала. Температуру транспортируемой среды tт рекомендуется принимать как среднюю в течение года, а наружного воздуха tо как среднегодовую. Если изолируемый трубопровод проходит в помещении, то температура внешней среды задается техническим заданием на проектирование, а при его отсутствии принимается равной +20°С. Показатель сопротивления теплообмену на поверхности теплоизоляционной конструкции Rн для условий прокладки по улице можно брать из Таблицы 2.
Таблица 2
Rн,(м2 ⁰C) /Вт | DN32 | DN40 | DN50 | DN100 | DN125 | DN150 | DN200 | DN250 | DN300 | DN350 | DN400 | DN500 | DN600 | DN700 |
tт = 100 ⁰C | 0.12 | 0.10 | 0.09 | 0.07 | 0.05 | 0.05 | 0.04 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.017 | 0.015 |
tт = 300 ⁰C | 0.09 | 0.07 | 0.06 | 0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.015 | 0.013 |
tт = 500 ⁰C | 0.07 | 0.05 | 0.04 | 0.04 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.016 | 0.014 | 0.012 |
Примечание: величину Rн при промежуточных значениях температуры теплоносителя вычисляют методом интерполяции. Если же показатель температуры ниже 100 ⁰C, величину Rн принимают как для 100 ⁰C.
Показатель В следует рассчитывать отдельно:
Таблица тепловых потерь при разной толщине труби и теплоизоляции.
B = (dиз + 2δ) / dтр, здесь:
- dиз — наружный диаметр теплоизоляционной конструкции, м;
- dтр — наружный диаметр защищаемой трубы, м;
- δ — толщина теплоизоляционной конструкции, м.
Вычисление толщины изоляции трубопроводов начинают с определения показателя ln B, подставив в формулу значения наружных диаметров трубы и теплоизоляционной конструкции, а также толщины слоя, после чего по таблице натуральных логарифмов находят параметр ln B. Его подставляют в основную формулу вместе с показателем нормируемого теплового потока qL и производят расчет. То есть толщина теплоизоляции трубопровода должна быть такой, чтобы правая и левая часть уравнения стали тождественны. Это значение толщины и следует принимать для дальнейшей разработки.
Рассмотренный метод вычислений относился к трубопроводам, диаметр которых менее 2 м. Для труб большего диаметра расчет изоляции несколько проще и производится как для плоской поверхности и по другой формуле:
δ = [K(tт — tо) / qF — Rн]
В этой формуле:
- δ — толщина теплоизоляционной конструкции, м;
- qF — величина нормируемого теплового потока, Вт/м2;
- остальные параметры — как в расчетной формуле для цилиндрической поверхности.
Тепловая изоляция трубопроводов и её суть
Применяя изоляцию теплового вида, производители облегчают себе осуществление тех или иных процессов по технологии. Это решение широко используется во многих сферах промышленности:
- Металлургической.
- Пищевой.
- Нефтеперерабатывающей.
- Химической.
Но большего внимания изоляция удостаивается от представителей энергетики. В данном случае объекты теплоизоляции имеют вид:
- Труб для дыма.
- Устройств по обмену тепла.
- Аккумуляторных баков, где хранится горячая вода.
- Турбин с газом и паром.
Тепловая изоляция трубопроводов используется на аппаратах, которые располагаются как в вертикальной, так и в горизонтальной плоскостях. Это актуальное решение для теплоизоляции оборудования, например резервуаров, в которых хранится вода вместе с теплоносителями. Ряд жёстких требований предъявляется к эффективности изоляционных покрытий.
Методика просчета многослойной теплоизоляционной конструкции
Таблица изоляции медных и стальных труб.
Некоторые перемещаемые среды имеют достаточно высокую температуру, которая передается наружной поверхности металлической трубы практически неизменной. При выборе материала для тепловой изоляции такого объекта сталкиваются с такой проблемой: не каждый материал способен выдержать высокую температуру, например, 500-600⁰C. Изделия, способные контактировать с такой горячей поверхностью, в свою очередь, не обладают достаточно высокими теплоизоляционными свойствами, и толщина конструкции получится неприемлемо большой. Решение — применить два слоя из различных материалов, каждый из которых выполняет свою функцию: первый слой ограждает горячую поверхность от второго, а тот защищает трубопровод от воздействия низкой температуры наружного воздуха. Главное условие такой термической защиты состоит в том, чтобы температура на границе слоев t1,2 была приемлемой для материала наружного изоляционного покрытия.
Для расчета толщины изоляции первого слоя используется формула, уже приводимая выше:
δ = [K(tт — tо) / qF — Rн]
Второй слой рассчитывают по этой же формуле, подставляя вместо значения температуры поверхности трубопровода tт температуру на границе двух теплоизоляционных слоев t1,2. Для вычисления толщины первого слоя утеплителя цилиндрических поверхностей труб диаметром менее 2 м применяется формула такого же вида, как и для однослойной конструкции:
ln B1 = 2πλ [K(tт — t1,2) / qL — Rн]
Подставив вместо температуры окружающей среды величину нагрева границы двух слоев t1,2 и нормируемое значение плотности потока тепла qL, находят величину ln B1. После определения числового значения параметра B1 через таблицу натуральных логарифмов рассчитывают толщину утеплителя первого слоя по формуле:
Данные для расчета теплоизоляции.
δ1 = dиз1 (B1 — 1) / 2
Расчет толщины второго слоя выполняют с помощью того же уравнения, только теперь температура границы двух слоев t1,2 выступает вместо температуры теплоносителя tт:
ln B2 = 2πλ [K(t1,2 — t0) / qL — Rн]
Вычисления делаются аналогичным образом, и толщина второго теплоизоляционного слоя считается по той же формуле:
δ2 = dиз2 (B2 — 1) / 2
Такие непростые расчеты вести вручную очень затруднительно, при этом теряется много времени, ведь на протяжении всей трассы трубопровода его диаметры могут меняться несколько раз. Поэтому, чтобы сэкономить трудозатраты и время на вычисление толщины изоляции технологических и сетевых трубопроводов, рекомендуется пользоваться персональным компьютером и специализированным программным обеспечением. Если же таковое отсутствует, алгоритм расчета можно внести в программу Microsoft Exel, при этом быстро и успешно получать результаты.
Виды утеплителей
Рассмотрим самые популярные и часто используемые материалы для теплоизоляции:
- Стекловолокно. Материалы из стеклянного волокна часто используют для трубопроводов надземной прокладки, так как они имеют длительный срок эксплуатации. Стекловолокно имеет низкую температуру применения и характеризуется низкой плотностью. В качественном стекловолокне высокая вибрационная, химическая и биологическая стойкость.
- Минеральная вата. Утепление трубопроводов минеральной ватой является весьма эффективным теплоизолятором. Этот изоляционный материал применят в разных условиях. В отличие от стекловолокна, которое имеет низкую температуру применения (до 180ºС), минеральная вата выдерживает температуру до 650 ºС. При этом сохраняются ее теплоизолирующие и механические свойства. Минеральная вата не теряет форму, имеет высокую стойкость к химическому воздействию, кислоте. Этот материал не токсичен и отличается низкой степенью влагопоглощения.
В свою очередь, минеральная вата бывает двух форм: каменная и стеклянная.
- Пенополиуритан имеет широкую область применения, но является достаточно дорогим материалом. Согласно нормам СНиП, тепловая изоляция трубопроводов является экологически безопасной и не воздействует на здоровье человека. Пенополиуритан устойчив к воздействию внешних факторов, нетоксичен и довольно прочен.
- Пенополистирол. В некоторых областях промышленности пенопласт является незаменимым материалом, так как имеет низкие показатели теплопроводности и влагопоглощения и долгий срок службы. Пенополистирол трудно воспламеняем, и является отличным звукоизолятором.
- Кроме вышеперечисленных материалов, утепление трубопроводов можно осуществлять и с помощью других менее известных, но не менее практичных утеплителей, таких как пеностекло и пеноизол. Эти материалы прочные, безопасные и являются близкими родственниками пенопласта.
Защиту от коррозии и высокую теплоизоляцию труб может обеспечить и теплоизоляционная краска.
Метод определения по заданной величине снижения температуры теплоносителя
Материалы для теплоизоляции труб по СНиП.
Задача такого рода часто ставится в том случае, если до конечного пункта назначения транспортируемая среда должна дойти по трубопроводам с определенной температурой. Поэтому определение толщины изоляции требуется произвести на заданную величину снижения температуры. Например, из пункта А теплоноситель выходит по трубе с температурой 150⁰C, а в пункт Б он должен быть доставлен с температурой не менее 100⁰C, перепад не должен превысить 50⁰C. Для такого расчета в формулы вводится длина l трубопровода в метрах.
Вначале следует найти полное сопротивление теплопередаче Rп всей теплоизоляции объекта. Параметр высчитывается двумя разными способами в зависимости от соблюдения следующего условия:
Если значение (tт.нач — tо) / (tт.кон — tо) больше или равно числу 2, то величину Rп рассчитывают по формуле:
Rп = 3.6Kl / GC ln [(tт.нач — tо) / (tт.кон — tо)]
В приведенных формулах:
- K — безразмерный коэффициент дополнительных потерь теплоты через крепежные элементы или опоры (Таблица 1);
- tт.нач — начальная температура в градусах транспортируемой среды или теплоносителя;
- tо — температура окружающей среды, ⁰C;
- tт.кон — конечная температура в градусах транспортируемой среды;
- Rп — полное тепловое сопротивление изоляции, (м2 ⁰C) /Вт
- l — протяженность трассы трубопровода, м;
- G — расход транспортируемой среды, кг/ч;
- С — удельная теплоемкость этой среды, кДж/(кг ⁰C).
Теплоизоляция стальной трубы из базальтового волокна.
В противном случае выражение (tт.нач — tо) / (tт.кон — tо) меньше числа 2, величина Rп высчитывается таким образом:
Rп = 3.6Kl [(tт.нач — tт.кон) / 2 — tо ] : GC (tт.нач — tт.кон)
Обозначения параметров такие же, как и в предыдущей формуле. Найденное значение термического сопротивления Rп подставляют в уравнение:
ln B = 2πλ (Rп — Rн), где:
- λ — коэффициент теплопроводности утеплителя, Вт/(м ⁰C);
- Rн — сопротивление теплопередаче на наружной поверхности изоляции, (м2 ⁰C) /Вт.
После чего находят числовое значение В и делают расчет изоляции по знакомой формуле:
δ = dиз (B — 1) / 2
В данной методике просчета изоляции трубопроводов температуру окружающей среды tо следует принимать по средней температуре самой холодной пятидневки. Параметры К и Rн — по приведенным выше таблицам 1,2. Более развернутые таблицы для этих величин имеются в нормативной документации (СНиП 41-03-2003, Свод Правил 41-103-2000).
Метод определения по заданной температуре поверхности утепляющего слоя
Данное требование актуально на промышленных предприятиях, где различные трубопроводы проходят внутри помещений и цехов, в которых работают люди. В этом случае температура любой нагретой поверхности нормируется в соответствии с правилами охраны труда во избежание ожогов. Расчет толщины теплоизоляционной конструкции для труб диаметром свыше 2 м выполняется в соответствии с формулой:
Формула определения толщины теплоизоляции.
δ = λ (tт — tп) / ɑ (tп — t0), здесь:
- ɑ — коэффициент теплоотдачи, принимается по справочным таблицам, Вт/(м2 ⁰C);
- tп — нормируемая температура поверхности теплоизоляционного слоя, ⁰C;
- остальные параметры — как в предыдущих формулах.
Расчет толщины утеплителя цилиндрической поверхности производится с помощью уравнения:
ln B =(dиз + 2δ) / dтр = 2πλ Rн (tт — tп) / (tп — t0)
Обозначения всех параметров как в предыдущих формулах. По алгоритму данный просчет схож с вычислением толщины утеплителя по заданному тепловому потоку. Поэтому дальше он выполняется точно так же, конечное значение толщины теплоизоляционного слоя δ находят так:
δ = dиз (B — 1) / 2
Предложенная методика имеет некоторую погрешность, хотя вполне допустима для предварительного определения параметров утепляющего слоя. Более точный расчет выполняется методом последовательных приближений с помощью персонального компьютера и специализированного программного обеспечения.
Разновидности утеплительных материалов
Теплоизоляция труб отопления осуществляется после приобретения материала, но до этого момента необходимо узнать о характеристиках и преимуществах утеплителя, а также области его применения. После этих данных удастся подобрать наиболее подходящий и эффективный вариант.
Пенополиуретан
Данный утеплитель состоит из ребер и стенок, которые образуют цельную конструкцию твердой формы. Он создает теплоизоляционную скорлупу, которая обладает высоким уровнем прочности, при этом достаточно эффективно удерживая тепло внутри отопительной сети. Пенополиуретан обладает такими положительными качествами:
- не имеет запаха и не является токсичным;
- не поддается гниению;
- он экологически безвреден для организма человека;
- имеет превосходные диэлектрические качества;
- материал устойчив к разному роду климатических воздействий, благоприятно подходя для использования вне помещения;
- достаточно крепкий утеплитель, исключающий возможность поломок трубопровода под воздействия механических нагрузок снаружи.
Его единственным ощутимым недостатком является высокая стоимость.
Минвата
Обладая существенным уровнем эффективности, является довольно востребованной среди теплоизоляторов. Она состоит из минеральной ваты, и имеет ряд своих особенностей:
- вата обладает низким поглощением влаги, благодаря обработке специальными составами в процессе изготовления;
- высокая степень термоустойчивости, что при нагреве обеспечивает сохранение теплоизоляционных и механических параметров на первичном уровне;
- является экологически безвредной, не содержа в составе токсических веществ;
- ей не страшны воздействия со стороны кислот, растворителей и других химических растворов.
Минеральная вата отлично подходит для использования в качестве теплоизолятора для труб отопительных сетей. Она довольно часто устанавливается на трубопроводах, что подвергаются беспрерывному нагреву большой силы.
Вспененный полиэтилен
Не наносит вреда человеческому организму. Он не боится существенных перепадов температур и является устойчивым к воздействию влаги. Утеплитель достаточно популярен среди покупателей. Имеет форму трубки с конкретной толщиной, в которой проделан надрез. Используется в качестве теплоизоляционного материала для труб отопительной сети, а еще при утеплении теплого и холодного водопровода.
Он сберегает свои свойства при использовании совместно с другими стройматериалы, среди которых бетон, известь и прочие.
Пенофол
Этот утеплитель для труб отопления появился на рынке совсем недавно, являясь отражающим теплоизолятором, который состоит из фольги из алюминия и ячеистого полиэтилена. Благодаря 2-м слоям материал обладает превосходными тепловыми показателями, из-за чего он довольно востребован среди покупателей. Фольгоизол имеет ряд особенностей:
- довольно легкий монтаж, не требующий специальных средств защиты;
- он экологически безвредный, не выделяющий токсичных веществ;
- обладает продолжительным сроком службы;
- имеет широкую сферу использования, подходя для применения как внутри помещения, так и снаружи.
Пенофол распространяется в рулонах с разнообразным уровнем плотности полиэтиленового слоя. При выборе толщины следует отталкиваться от будущих условий использования теплоизолятора. Двойной слой способствует удерживанию тепла в закрытом пространстве, достигая максимально допустимой эффективности.