Диаметр трубопроводов, скорость течения и расход теплоносителя.
Данный материал предназначен понять, что такое диаметр, расход и скорость течения. И какие связи между ними. В других материалах будет подробный расчет диаметра для отопления.
Для того чтобы вычислить диаметр необходимо знать:
1. Расход теплоносителя (воды) в трубе. 2. Сопротивление движению теплоносителя (воды) в трубе определенной длины. |
Вот необходимые формулы, которые нужно знать:
S-Площадь сечения м 2 внутреннего просвета трубы π-3,14-константа – отношение длины окружности к ее диаметру. r-Радиус окружности, равный половине диаметра, м Q-расход воды м 3 /с D-Внутренний диаметр трубы, м V-скорость течения теплоносителя, м/с |
Сопротивление движению теплоносителя.
Любой движущийся внутри трубы теплоноситель, стремиться к тому, чтобы прекратить свое движение. Та сила, которая приложена к тому, чтобы остановить движение теплоносителя – является силой сопротивления.
Это сопротивление, называют – потерей напора. То есть движущийся теплоноситель по трубе определенной длины теряет напор.
Напор измеряется в метрах или в давлениях (Па). Для удобства в расчетах необходимо использовать метры.
Для того, чтобы глубже понять смысл данного материла, рекомендую проследить за решением задачи.
В трубе с внутренним диаметром 12 мм течет вода, со скоростью 1м/с. Найти расход.
Решение:
Необходимо воспользоваться вышеуказанными формулами:
1. Находим сечение 2. Находим расход |
D=12мм=0,012 м п=3,14 |
S=3.14•0,012 2 /4=0,000113 м 2
Q=0,000113•1=0,000113 м 3 /с = 0,4 м 3 /ч.
Имеется насос, создающий постоянный расход 40 литров в минуту. К насосу подключена труба протяженностью 1 метр. Найти внутренний диаметр трубы при скорости движения воды 6 м/с.
Q=40л/мин=0,000666666 м 3 /с
Из выше указанных формул получил такую формулу.
Каждый насос имеет вот такую расходно-сопротивляемую характеристику:
Это означает, что наш расход в конце трубы будет зависеть от потери напора, которое создается самой трубой.
Чем длиннее труба, тем больше потеря напора. Чем меньше диаметр, тем больше потеря напора. Чем выше скорость теплоносителя в трубе, тем больше потеря напора. Углы, повороты, тройники, заужения и расширение трубы, тоже увеличивают потерю напора. |
Более детально потеря напора по длине трубопровода рассматривается в этой статье:
А теперь рассмотрим задачу из реального примера.
Стальная (железная) труба проложена длиной 376 метров с внутренним диаметром 100 мм, по длине трубы имеются 21 отводов (угловых поворотов 90°С). Труба проложена с перепадом 17м. То есть труба относительно горизонта идет вверх на высоту 17 метров. Характеристики насоса: Максимальный напор 50 метров (0,5МПа), максимальный расход 90м 3 /ч. Температура воды 16°С. Найти максимально возможный расход в конце трубы.
D=100 мм = 0,1м L=376м Геометрическая высота=17м Отводов 21 шт Напор насоса= 0,5 МПа (50 метров водного столба) Максимальный расход=90м 3 /ч Температура воды 16°С. Труба стальная железная |
Найти максимальный расход = ?
Решение на видео:
Для решения необходимо знать график насосов: Зависимость расхода от напора.
В нашем случае будет такой график:
Смотрите, прерывистой линией по горизонту обозначил 17 метров и на пересечение по кривой получаю максимально возможный расход: Qmax.
По графику я могу смело утверждать, что на перепаде высоты, мы теряем примерно: 14 м 3 /час. (90-Qmax=14 м 3 /ч).
Ступенчатый расчет получается потому, что в формуле существует квадратичная особенность потерь напора в динамике (движение).
Поэтому решаем задачу ступенчато.
Поскольку мы имеем интервал расходов от 0 до 76 м 3 /час, то мне хочется проверить потерю напора при расходе равным: 45 м 3 /ч.
Находим скорость движения воды
Q=45 м 3 /ч = 0,0125 м 3 /сек.
V = (4•0,0125)/(3,14•0,1•0,1)=1,59 м/с
Находим число рейнольдса
ν=1,16•10 -6 =0,00000116. Взято из таблици. Для воды при температуре 16°С.
Δэ=0,1мм=0,0001м. Взято из таблицы, для стальной (железной) трубы.
Далее сверяемся по таблице, где находим формулу по нахождению коэффициента гидравлического трения.
У меня попадает на вторую область при условии
10•D/Δэ 0.25 =0,11•( 0,0001/0,1 + 68/137069) 0,25 =0,0216
Далее завершаем формулой:
h=λ•(L•V 2 )/(D•2•g)= 0,0216•(376•1,59•1,59)/(0,1•2•9,81)=10,46 м.
Как видите, потеря составляет 10 метров. Далее определяем Q1, смотри график:
Теперь делаем оригинальный расчет при расходе равный 64м 3 /час
Q=64 м 3 /ч = 0,018 м 3 /сек.
V = (4•0,018)/(3,14•0,1•0,1)=2,29 м/с
λ=0,11( Δэ/D + 68/Re ) 0.25 =0,11•( 0,0001/0,1 + 68/197414) 0,25 =0,021
h=λ•(L•V 2 )/(D•2•g)= 0,021•(376•2,29 •2,29)/(0,1•2•9,81)=21,1 м.
Отмечаем на графике:
Qmax находится на пересечении кривой между Q1 и Q2 (Ровно середина кривой).
Ответ: Максимальный расход равен 54 м 3 /ч. Но это мы решили без сопротивления на поворотах.
Температурный график системы отопления — порядок расчета и готовые таблицы
Основой экономного подхода к расходу энергоносителя в системе отопления любого типа является температурный график. Его параметры указывают оптимальное значение нагрева воды, оптимизируя тем самым затраты. Для того чтобы на практике применить эти данные необходимо подробнее узнать принципы его построения.
Терминология
Температурный график — оптимальное значение нагрева теплоносителя для создания комфортной температуры в помещении. Он состоит из нескольких параметров, каждый из которых прямым образом влияет на качество работы всей системы отопления.
- Температура во входном и выходном патрубках котла отопления.
- Разница между этими показателями нагрева теплоносителя.
- Температура в помещении и на улице.
Последние характеристики являются определяющими для регулирования первых двух. Теоретически необходимость в увеличении нагрева воды в трубах наступает при уменьшении температуры на улице. Но насколько нужно увеличить мощность котла, чтобы нагрев воздуха в помещении был оптимален? Для этого составляют график зависимости параметров системы отопления.
- 150°С/70°С. Перед поступлением к пользователям теплоноситель разбавляется с водой из обратной трубы для нормализации входящей температуры.
- 90°С/70°С. В этом случае нет необходимости устанавливать оборудование для смешивания потоков.
Согласно текущим параметрам системы коммунальные службы должны следить за соблюдением значения нагрева теплоносителя в обратной трубе. Если этот параметр меньше нормального – значит, помещение прогревается не должным образом. Превышение говорит об обратном – температура в квартирах слишком высокая.
Температурный график для частного дома
Практика составления подобного графика для автономного отопления не сильно развита. Это объясняется его принципиальным отличием от централизованного. Регулирование температуры воды в трубах возможно осуществлять в ручном и автоматическом режиме. Если при проектировании и практической реализации была учтена установка датчиков для автоматического регулирования работы котла и термостатов в каждой комнате, то острой необходимости в расчете температурного графика не будет.
Но для подсчета будущих расходов в зависимости от погодных условий он будет незаменим. Для того чтобы составить его согласно текущим правилам, необходимо учитывать следующие условия:
- Тепловые потери дома должны быть в пределах нормы. Основным показателем этого условия является коэффициент сопротивления теплопередачи стен. В зависимости от региона он различен, но для средней полосы России можно взять среднее значение — 3,33 м²*С/Вт.
- Равномерный нагрев жилых помещений в доме при работе системы отопления. При этом не учитывается принудительное уменьшение температуры в том или ином элементе системы. В идеале, количество тепловой энергии от нагревательного прибора (радиатора), максимально удаленного от котла, должно быть равно установленному близко к нему.
Только после обеспечения этих условий можно переходить к расчетной части. На этом этапе могут возникнуть трудности. Правильный расчет индивидуального температурного графика представляет собой сложную математическую схему, в которой учитываются все возможные показатели.
Однако для облегчения задачи существуют уже готовые таблицы с показателями. Ниже приведены примеры самых часто встречающихся режимов работы отопительного оборудования. В качестве начальных условий были взяты следующие вводные данные:
- Минимальная температура воздуха на улице — 30°С
- Оптимальная температура в помещении +22°С.
На основе этих данных были составлены графики для следующих видов работы отопительных систем.
Стоит помнить, что эти данные не учитывают особенности конструкции системы отопления. Они лишь показывают рекомендованные значения температуры и мощности отопительного оборудования в зависимости от погодных условий.
eco-sip.ru
- Шпаклевка
- Возведение стены
- Покраска
- Обои
- Украшаем стены
- Фасадные панели
- Другие материалы
Скорость движения воды в трубах системы отопления.
На лекциях нам говорили, что оптимальная скорость движения воды в трубопроводе 0,8-1,5 м/с. На некоторых сайтах встречаю подобное (конкретно про максимальную в полтора метра в секунду).
НО в методичке сказано принимать потери на метр погонный и скорости — по приложению в методичке. Там скорости ну совсем другие, максимальная, что есть в табличке — как раз 0,8 м/с.
И в учебнике встретил пример расчета, где скорости не превышают 0,3-0,4 м/с.
Дак в чем же суть? Как вообще принимать (и как в реальности, на практике)?
Скрин таблички из методички прилагаю.
За ответы всем заранее спасибо!
Ты чего хочешь-то? «Военную тайну» (как на самом деле надо делать) узнать, или курсовик сдать? Если только курсовик — то по методичке, которую преподаватель и написал и ничего иного не знает и знать не хочет. И если сделаешь как надо
, еще и не примет.
0.036*G^0.53 — для стояков отопления
0.034*G^0.49 — для ммагистралей ветки, пока нагрузка не уменьшится до 1/3
0.022*G^0.49 — для концевых участков ветки с нагрузкой в 1/3 от всей ветки
В курсовике то я посчитал как по методичке. Но хотел узнать, как по делу обстановка.
Тоесть получается в учебнике (Староверов, М. Стройиздат) тоже не верно (скорости от 0,08 до 0,3-0,4). Но возможно там только пример расчета.
Offtop: Тоесть вы тоже подтверждайте, что по сути старые (относительно) СНиПы вполне ничем не уступают новым, а где то даже лучше. (нам об этом многие преподаватели говорят. По ПСП вообще декан говорит, что их новый СНиП во многом противоречит и законам и самому себе).
Но в принципе все пояснили.
а расчет на уменьшение диаметров по ходу потока вроде экономит материалы. но увеличивает трудозатраты на монтаж. если труд дешевый-возможно имеет смысл. если труд дорогой — никакого смысла нет. И если на большои длине (теплотрасса) изменение диаметра выгодно -в пределах дома возня с этими диаметрами не имеет смысла.
и еще есть понятие гидравлическои устойчивости системы отопления — и здесь выигрывают схемы ShaggyDoc
Каждый стояк (верхняя разводка) отключаем вентилем от магистрали. Дак вот встречал, что сразу после вентиля ставят краны двойной регулировки. Целесообразно?
И чем отключать сами радиаторы от подводок: вентилями, или ставить кран двойной регулировки, или и то и то? (тоесть если бы этот кран мог полностью перекрывать трупровод — то вентиль тогда вообще не нужен?)
И с какой целью изолируют участки трубопровода? (обозначение — спиралью)
Система отопления двухтрубная.
Мне конкретно по подающему трубопроводу узнать, вопрос выше.
У нас есть коэффициент местного сопротивления на вход потока с поворотом. Конкретно применяем на вход через жалюзийную решетку в вертикальный канал. И коэффициент этот равен 2,5 — что есть не мало.
Тоесть как бы так придумать, чтобы избавиться от этого. Один из выходов — если решетка будет «в потолке», и тогда входа с поворотом не будет (хотя небольшой все же будет, так как воздух будет стягиваться по потолку, двигаясь горизонтально, и двигаться к этой решетке, поворачивать на вертикальное направление, но по логике это должно быть меньше, чем 2,5).
В многоквартирном дме решетку в потолке не сделаешь, соседи. а в одноквартирном — потолок не красивый с решеткой будет, да и мусор может попасть. тоесть проблему так не решить.
часто сверлю, потом затыкаю
Возьмите тепловую мощность и начальную с конечной температуры. По этим данным Вы совершенно достоверно посчитаете
скорость. Она, скорее всего, будет максимум 0.2 м\С. БОльшие скорости — нужен насос.
Системы отопления с насосной циркуляцией
Как уже неоднократно упоминалось, главным недостатком системы отопления с естественной циркуляцией теплоносителя является низкий циркуляционный напор (особенно в квартирной системе) и вследствие этого увеличенный диаметр труб. Достаточно слегка ошибиться с выбором диаметров труб и теплоноситель уже «зажат» и не может преодолеть гидравлического сопротивления. «Разжать» систему можно без каких-либо значительных переделок: включить в нее циркуляционный насос (рис. 12) и перенести расширительный бачок с подачи на обратку. Следует заметить, что перенос расширителя на обратку не всегда обязателен. При простой переделке несложной отопительной системы, например, квартирной, бачок можно оставить там, где он стоял. При правильной реконструкции или устройстве новой системы бачок переносится на обратку и заменяется с открытого на закрытый.
рис. 12. Циркуляционный насос
Какой мощности должен быть циркуляционный насос, как и куда его устанавливать?
Циркуляционные насосы для бытовых систем отопления имеют низкое потребление электроэнергии — около 60–100 ватт, то есть как обычная лампочка, они не поднимают воду, а лишь помогают ей преодолеть местные сопротивления в трубах. Эти насосы можно сравнить с движителем (винтом) корабля: винт толкает воду и обеспечивает продвижение судна, но при этом воды в океане не убавляется и не прибавляется, то есть общий баланс воды остается прежним. Циркуляционный насос, закрепленный к трубопроводу, толкает воду, но сколько бы он ее не вытолкнул, с другой стороны к нему поступает такое же количество воды, то есть опасения, что насос вытолкнет теплоноситель через открытый расширитель напрасны: система отопления, это замкнутый контур и количество воды в нем постоянное. Помимо циркуляционных в централизованные системы могут быть включены повысительные насосы, которые повышают давление и способны поднимать воду, их собственно и нужно называть насосами, а циркуляционные, в переводе на общепонятный язык, и насосами-то назвать трудно — так… вентиляторы. Сколько бы не гонял обычный бытовой вентилятор воздух по квартире, все на что он способен, это создать ветерок (циркуляцию воздуха), но не способен изменить атмосферное давление даже в наглухо закрытом помещении.
В результате применения циркуляционного насоса значительно увеличивается радиус действия отопительной системы, сокращаются диаметры трубопроводов и создается возможность присоединения систем к котлам с повышенными параметрами теплоносителя. Чтобы обеспечить бесшумную работу водяной системы отопления с насосной циркуляцией, скорость движения теплоносителя не должна превышать: в трубопроводах, прокладываемых в основных помещениях жилых зданий, при условных проходах труб 10, 15 и 20 мм и более соответственно 1,5; 1,2 и 1 м /с; в трубопроводах, прокладываемых в вспомогательных помещениях жилых зданий — 1,5 м /с; в трубопроводах, прокладываемых в вспомогательных зданиях — 2 м /с.
Для обеспечения бесшумности системы и доставки ею требуемого объема теплоносителя необходимо произвести небольшой расчет. Мы уже знаем, как ориентировочно определить требуемую мощность котла (в киловаттах), исходя из площади отапливаемых помещений. Оптимальный расход воды, проходящий через котел, рекомендованный многими фирмами-изготовителями котельного оборудования, рассчитывается по простой эмпирической формуле: Q=P, где Q — расход теплоносителя через котел, л/мин; Р — мощность котла, кВт. Например, для котла мощностью 30 кВт расход воды составляет примерно 30 л/мин. Для определения расхода теплоносителя на любом участке циркуляционного кольца используем эту же формулу, зная мощность устанавливаемых на этом участке радиаторов, например, производим расчет расхода воды для радиаторов, установленных в одной комнате. Предположим, что мощность радиаторов составляет 6 кВт, значит и расход теплоносителя примерно составит 6 л/мин.
По расходу воды определяем диаметры трубопроводов (табл. 1). Эти величины отвечают принятым на практике соответствиям диаметров труб с расходом протекающего по ним теплоносителя со скоростью не более 1,5 метров в секунду.
Таблица 1
Соответствие диаметров трубопроводов с расходом теплоносителя
Расход, л/мин | 5,7 | 15 | 30 | 53 | 83 | 170 | 320 |
Диаметр, дюймы | 1/2 | 3/4 | 1 | 1¼ | 1½ | 2 | 2½ |
Далее определяем мощность циркуляционного насоса. На каждые 10 метров длины циркуляционного кольца требуется 0,6 метра напора насоса. Например, если общая длина трубопроводного кольца 90 метров, напор насоса должен быть 5,4 метра. Идем в магазин (или подбираем по каталогу) и приобретаем насос с устраивающим нас напором. Если применяются трубы меньших диаметров, чем рекомендованные в предыдущем абзаце, мощность насоса должна быть увеличена, так как чем тоньше трубы, тем больше в них гидравлическое сопротивление. И соответственно, при применении труб больших диаметров мощность насоса может быть уменьшена.
Для того чтобы обеспечить в системах отопления постоянную циркуляцию воды, желательно устанавливать не менее двух циркуляционных насосов, один из которых — рабочий, другой (на байпасе) — резервный. Либо на систему устанавливается один насос, а другой лежит в укромном месте, на случай быстрой замены при поломке первого.
Необходимо отметить, что приведенный здесь расчет системы отопления крайне примитивен и не учитывает многих факторов и особенностей индивидуальной системы отопления. Если вы строите коттедж со сложной архитектурой системы отопления, то необходимо производить точные расчеты. Это могут сделать только инженеры-теплотехники. Строить многомиллионное сооружение без исполнительной документации — проекта, учитывающего все особенности постройки, крайне не разумно.
Циркуляционный насос в отопительной системе заполнен водой и испытывает равное (если вода не нагревается) гидростатическое давление с двух сторон — со стороны входного (всасывающего) и выходного (нагнетательного) патрубков, соединенных с теплопроводами. Современные циркуляционные насосы, сделанные с водяной смазкой подшипников, можно размещать как на подающем, так и на обратном трубопроводе, но чаще всего их ставят на обратке. Изначально это было обусловлено чисто технической причиной: при размещении в более холодной воде увеличивался срок службы подшипников, ротора и сальниковой набивки, через которую проходит вал насоса. А сейчас их ставят на обратку скорее по привычке, так как с точки зрения создания искусственной циркуляции воды в замкнутом контуре местоположение циркуляционного насоса безразлично. Хотя размещение их на подающем трубопроводе, где обычно меньше гидростатическое давление, более рационально. Например, расширительный бачок установлен в вашей системе на высоте 10 м от котла, значит, он создает статическое давление 10 м водяного столба, но это утверждение верно только для нижнего трубопровода, в верхнем давление будет меньше, так как столб воды здесь будет меньшей величины. Где бы мы не расположили насос, он будет с двух сторон подвергаться одинаковому давлению, даже если его поставить на вертикальном главном подающем или обратном стояке, разница давлений между двумя патрубками насоса будет невелика, так как насосы имеют небольшие размеры.
Однако все не так просто. Насос, действующий в замкнутом контуре системы отопления, усиливает циркуляцию, нагнетая воду в теплопровод с одной стороны и засасывая с другой. Уровень воды в расширительном баке при пуске циркуляционного насоса не изменится, так как равномерно работающий насос лишь обеспечивает циркуляцию при неизменном количестве воды. Поскольку при этих условиях (равномерности действия насоса и постоянства объема воды в системе) уровень воды в расширительном баке сохраняется неизменным, безразлично, работает ли насос или нет, гидростатическое давление в точке присоединения расширителя к трубам системы будет постоянным. Эту точку называют нейтральной, так как циркуляционное давление, развиваемое насосом, никак не влияет на статическое давление, создаваемое расширительным бачком. Другими словами, давление циркуляционного насоса в этой точке равно нулю.
В любой закрытой гидравлической системе циркуляционный насос использует расширительный бак как точку отсчета, в которой давление, развиваемое насосом, меняет свой знак: до этой точки насос, создавая компрессию, воду нагнетает, после нее он, вызывая разрежение, воду всасывает. Все теплопроводы системы от насоса до точки постоянного давления (считая по направлению движения воды) будут относиться к зоне нагнетания насоса. Все теплопроводы после этой точки — к зоне всасывания. Другими словами, если циркуляционный насос врезать в трубопровод сразу после точки подсоединения расширительного бачка, то он будет отсасывать воду из бачка и нагнетать ее в систему, если насос установить перед точкой подсоединения бачка, то насос будет откачивать воду из системы и нагнетать ее в бачок.
Ну и что, какая нам разница откачивает насос воду из бачка или нагнетает в него, лишь бы он крутил ее по системе. А разница есть и существенная: в работу системы вмешивается статическое давление, создаваемое расширительным бачком. В трубопроводах, расположенных в зоне нагнетания насоса, следует считаться с повышением гидростатического давления по сравнению с давлением воды в состоянии покоя. Напротив, в трубопроводах расположенных в зоне всасывания насоса, необходимо учитывать понижение давления, при этом возможен случай, когда гидростатическое давление не только понизится до атмосферного, но даже может возникнуть разрежение. То есть, в результате разности давлений в системе появляется опасность всасывания или высвобождения воздуха либо вскипания теплоносителя.
Во избежание нарушения циркуляции воды из-за ее вскипания или подсасывания воздуха при конструировании и гидравлическом расчете систем водяного отопления должно соблюдаться правило: в зоне всасывания в любой точке трубопроводов системы отопления гидростатическое давление при действии насоса должно оставаться избыточным. Возможны четыре способа выполнения этого правила (рис. 13).
рис. 13. Принципиальные схемы систем отопления с насосной циркуляцией и открытым расширительным бачком
1. Подъем расширительного бака на достаточную высоту (обычно не менее 80 см). Это достаточно простой способ при реконструкции систем с естественной циркуляцией в циркуляцию насосную, но требует значительного по высоте чердачного помещения и тщательного утепления расширительного бачка. 2. Перемещение расширительного бака к наиболее опасной верхней точке с целью включения верхней магистрали в зону нагнетания. Здесь необходимо сделать пояснение. В новых отопительных системах подающие трубопроводы с насосной циркуляцией делаются с уклонами не от котла, а к котлу, для того чтобы воздушные пузырьки двигались попутно с водой, так как побудительная сила циркуляционного насоса не даст им выплыть «против течения», как это было в системах с естественной циркуляцией. Поэтому верхняя точка системы получается не на главном стояке, а на наиболее удаленном. Для реконструкции старой системы с естественной циркуляцией в насосную этот способ достаточно трудоемок, так как требует переделки трубопроводов, а для создания новой системы — не оправдан, так как возможны другие, более удачные варианты. 3. Присоединение трубы расширительного бака вблизи всасывающего патрубка циркуляционного насоса. Другими словами, если реконструируем старую систему с естественной циркуляцией, то просто отрезаем бачок от подающей магистрали и перестыковываем его на обратку позади циркуляционного насоса и тем самым создаем для насоса наиболее благоприятные условия. 4. Отходим от привычной схемы размещения насоса на обратке и включаем его в подающую магистраль сразу после точки подсоединения расширительного бачка. При реконструкции системы с естественной циркуляцией это самый простой способ: просто врезаем насос в трубу подачи, ничего больше не переделывая. Однако к выбору насоса нужно отнестись очень внимательно, все-таки мы размещаем его в неблагоприятные условия высоких температур. Насос должен будет долго и надежно служить, а это могут гарантировать только солидные фирмы-изготовители.
Современный рынок сантехнической и отопительной арматуры позволяет заменить расширительные бачки открытого типа на закрытые. В закрытом бачке не происходит соприкосновения жидкости системы с воздухом: теплоноситель не испаряется и не обогащается кислородом. Это снижает потери тепла и воды, уменьшает внутреннюю коррозию отопительных приборов. Из закрытого бачка жидкость никогда не выльется наружу.
Расширительный бачок закрытого типа («экспанзомат») — капсула шарообразной или овальной формы, разделенная внутри герметичной мембраной на две части: воздушную и жидкостную. В воздушную часть корпуса под определенным давлением закачивается азотосодержащая смесь. До заполнения отопительной системы водой давление газовой смеси внутри бака плотно прижимает диафрагму к водяной части бака. Нагревание воды приводит к созданию рабочего давления и увеличению объема теплоносителя — мембрана выгибается в сторону газовой части бака. При максимальном рабочем давлении и максимальном увеличении объема воды происходит заполнение водяной части бака и максимальное сжатие газовой смеси. Если давление продолжает повышаться и продолжает расти объем теплоносителя, то срабатывает предохранительный клапан сбрасывающий воду (рис. 14).
рис. 14. Расширительный бачок мембранного типа
Объем бака подбирают таким, чтобы его полезный объем был не менее объема температурного расширения теплоносителя, а предварительное давление воздуха в газовой части бачка делают равным статическому давлению столба теплоносителя в системе. Такой подбор давления газовой смеси позволяет держать мембрану в равновесном (не в натянутом) положении при заполненной, но не включенной системе отопления.
Бачок закрытого типа можно поставить в любой точке системы, но, как правило, его устанавливают рядом с котлом, так как температура жидкости в месте установки расширительного бака должна быть по возможности минимальной. А мы уже знаем, что циркуляционный насос лучше всего устанавливать сразу за расширителем, где для него (да и для системы отопления в целом) создаются наиболее благоприятные условия (рис. 15).
рис. 15. Принципиальные схемы систем отопления с насосной циркуляцией и расширительным бачком закрытого типа
Однако при такой схеме системы отопления мы сталкиваемся с двумя проблемами: удалением воздуха и повышенным давлением на котле.
Если в системах с открытыми расширительными бачками воздух удалялся через расширитель противотоком (в системах с естественной циркуляцией) или попутно (в системах с насосной циркуляцией), то с закрытыми бачками такого не происходит. Система полностью замкнута и воздуху попросту негде вырваться наружу. Для удаления воздушных пробок в верхней точке трубопровода устанавливаются автоматические спускники воздуха — приборы, снабженные поплавками и запорными клапанами. По мере увеличения давления клапан срабатывает и стравливает воздух в атмосферу. Либо на каждый радиатор отопления устанавливаются краны Маевского. Эта деталь, установленная на отопительные приборы, позволяет спускать воздушную пробку непосредственно из радиаторов. Кран Маевского входит в комплект некоторых моделей радиаторов, но чаще предлагается отдельно.
рис. 16. Автоматический воздухоотводчик
Принцип действия воздухоотводчиков (рис. 16) заключается в том, что при отсутствии воздуха поплавок внутри прибора держит выпускной клапан закрытым. Когда воздух собирается в поплавковой камере, уровень воды внутри воздухоотводчика понижается. Поплавок опускается и открывается выпускной клапан, через который воздух выводится в атмосферу. После выхода воздуха уровень воды в воздухоотводчике повышается и поплавок всплывает, что приводит к закрытию выпускного клапана. Процесс продолжается до тех пор, пока воздух вновь не соберется в поплавковой камере и не понизит уровень воды, опуская поплавок. Автоматические воздухоотводчики изготавливаются разных конструкций, форм и размеров и могут устанавливаться как на магистральном трубопроводе, так и непосредственно (Г-образной формы) на радиаторах.
Кран Маевского, в отличие от автоматического воздухоотводчика, это в общем-то обычная пробка с воздухоотводным каналом и ввернутым в него конусным винтом: выворачиванием винта освобождается канал и воздух выходит наружу. Заворачивание винта закрывает канал. Также бывают воздухоотводчики, в которых вместо конусного винта используется металлический шарик, перекрывающий канал сброса воздуха.
Вместо автоматических воздухоотводчиков и кранов Маевского в систему отопления можно включить сепаратор воздуха. Этот прибор основан на применении закона Генри. Воздух, присутствующий в системах отопления, находится частично в растворенном виде, а частично в виде микропузырьков. При прохождении воды (вместе с воздухом) через систему она попадает в области различных температур и давлений. В соответствии с законом Генри в одних областях воздух будет выделяться из воды, а в других растворяться в ней. В котле теплоноситель нагревается до высокой температуры, поэтому именно в нем из содержащей воздух воды будет высвобождаться наибольшее количество воздуха в виде мельчайших пузырьков. Если их незамедлительно не отвести, то они растворятся в других местах системы, где температура меньше. Если удалить микропузырьки сразу за котлом, то на выходе сепаратора получим обезвоздушенную воду, которая будет поглощать воздух в разных местах системы. Этот эффект используется для поглощения воздуха в системе и выведения его в атмосферу посредством комбинации котла и сепаратора воздуха. Процесс продолжается постоянно до полного выведения воздуха из системы.
рис. 17. Сепаратор воздуха
Работа сепаратора воздуха (рис. 17) основана на принципе слияния микропузырьков. Практически это означает, что маленькие пузырьки воздуха прилипают к поверхности специальных колец и собираются вместе, образуя большие пузырьки, которые могут отделиться и всплыть в воздушную камеру сепаратора. Когда поток жидкости проходит через кольца, он расходится во множестве различных направлений, а конструкция колец такова, что вся жидкость, проходящая через них, вступает в контакт с их поверхностью, делая возможным прилипание микропузырьков и их слияние.
рис. 18. Принципиальные схемы систем отопления с насосной циркуляцией, расширительным бачком закрытого типа и сепаратором воздуха
Теперь немного отвлечемся от воздуха и вернемся обратно к циркуляционному насосу. В системах отопления с протяженными трубопроводами и, как следствие, с большими гидравлическими потерями, нередко требуются довольно мощные циркуляционные насосы, создающие давление на нагнетающем патрубке больше того, на которое рассчитан отопительный котел. Другими словами при размещении насоса на обратке непосредственно перед котлом могут потечь соединения в теплообменнике котла. Для того чтобы этого не произошло, мощные циркуляционные насосы устанавливают не перед котлом, а за ним — на подающем трубопроводе. И тут же встает вопрос: где размещать сепаратор воздуха, за насосом или перед ним? Ведущие изготовители отопительных систем решили этот вопрос и предлагают устанавливать сепаратор перед насосом (рис. 18), для предохранения его от повреждений пузырьками воздуха.
А теперь рассмотрим системы отопления с насосной циркуляцией более подробно.
Расчет скорости движения теплоносителя в трубопроводах
При проектировании систем отопление особое внимание следует уделять скорости движения теплоносителя в трубопроводах, так как скорость на прямую влияет на уровень шума. Согласно СП 60.13330.2012
Свод правил. Отопление, вентиляция и кондиционирование воздуха. Актуализированная редакция СНиП 41-01-2003 максимальная скорость воды в системе отопления определяется по таблице
Согласно СП 60.13330.2012. Свод правил. Отопление, вентиляция и кондиционирование воздуха. Актуализированная редакция СНиП 41-01-2003 максимальная скорость воды в системе отопления определяется по таблице.
Допустимый эквивалентный уровень шума, дБА | Допустимая скорость движения воды, м/с, в трубопроводах при коэффициентах местных сопротивлений узла отопительного прибора или стояка с арматурой, приведенных к скорости теплоносителя в трубах | ||||
До 5 | 10 | 15 | 20 | 30 | |
25 | 1.5/1.5 | 1.1/0.7 | 0.9/0.55 | 0.75/0.5 | 0.6/0.4 |
30 | 1.5/1.5 | 1.5/1.2 | 1.2/1.0 | 1.0/0.8 | 0.85/0.65 |
35 | 1.5/1.5 | 1.5/1.5 | 1.5/1.1 | 1.2/0.95 | 1.0/0.8 |
40 | 1.5/1.5 | 1.5/1.5 | 1.5/1.5 | 1.5/1.5 | 1.3/1.2 |
Примечания
|
calceng.ru
Выбор подходящей скорости носителя тепла в системе квартирного отопления
Есть одноуровневая квартира изнутри пятиэтажного коттеджного дома. Вся площадь 113 кв. м. Стены с внешней стороны утеплены. Теплоснабжение газовое, от двухступенчатого котла «Ariston UNO». Разводка теплоснабжения коллекторная (звездой). Полов с подогревом нет, в каждом помещении отопительные приборы. Котел управляется комнатным термостатическим клапаном — недельным программатором, расположенном в самом холодном помещении.
На насосе котла есть трехуровневая регулировка скорости носителя тепла в системе.
Вопрос! Как подобрать самую хорошую установку скорости носителя тепла, чтобы система работала с самой большой экономией ?
PS Эксперименты с разной скоростью носителя тепла в этой квартире показывают, что при любом из трех предоставленных вариантов все отопительные приборы работают хорошо. На большой скорости каких-нибудь видимых шумовых эффектов не наблюдалось.
Ежачок , с уменьшением скорости падает тепоотдача отопительных приборов, и растёт разница подача/обратка. Подходящее значение этой разности для котла 20 градусов. Померяйте эту температурную разницу на различных скоростях.
Увеличиваем скорость — увеличиваем шумовой фон
Ежачок написал: Вопрос! Как подобрать самую хорошую установку скорости носителя тепла, чтобы система работала с самой большой экономией ?
Котел конденсационный или неконденсационный? Трубы полимерные или железные? От этого может зависеть ответ на Ваш вопрос.
Гидравлический расчёт отопительных систем. Теплорасчёт (расчёт утепления) квартир и домов.
Ежачок написал: Вопрос! Как подобрать самую хорошую установку скорости носителя тепла, чтобы система работала с самой большой экономией ?
Скорость — это уже производная от расхода носителя тепла и трубного диаметра. Т.е. первичен по важным условиям собственно глобальный расход носителя тепла.
Для оснащения самого большого Коэффициент полезного действия котла, необходимо обеспечить расход носителя тепла таким, чтобы режим тепла котла был:
Касательно к навесным котлам и напольным со встречным направлением потоков (энергозависимые).
Для неконденсационного котла: 1а) Подача/обратка — 80/60 градусов для труб сделанных из металла в системе. 1б) 70/60 — для полипропиленовых труб.
Для котла конденсационного типа: 2а) Максимум 80/60 для труб сделанных из металла с уменьшением режима под управлением погодозависимой автоматики котла до 50/30. Чем ниже обратка для холодной пятидневки — тем больше экономии газа. К примеру, для экономии газа можно спроектировать режим котла для холодной пятидневки 70/50 с уменьшением режима в межсезонье до 40/30. 2б) Максимум 70/50 — для полипропиленовых труб. Понижение графика как и в предыдущем пункте будет давать возможность экономить газ.
П.С. А чтобы не было шума в трубах и арматуре, необходимо не превосходить максимально возможные скорости носителя тепла в трубах (можно смотреть на линейное сопротивление не больше 150-200 Па/метр), и не превосходить максимально возможные перепады давлений на арматуре (для термоклапанов не выше 30-60 кПа в зависимости от изготовителя и марки).
Гидравлический расчёт отопительных систем. Теплорасчёт (расчёт утепления) квартир и домов.
Выбор подходящей скорости носителя тепла в системе квартирного отопления
Есть одноуровневая квартира изнутри пятиэтажного коттеджного дома. Вся площадь 113 кв. м. Стены с внешней стороны утеплены. Теплоснабжение газовое, от двухступенчатого котла «,Ariston UNO»,.- Форум Mastergrad
Какие могут быть последствия заужение диаметра трубы отопления
Заужение диаметра трубы крайне нежелательно. Когда происходит разводка по дому, рекомендовано использовать одинаковый типоразмер – увеличить или уменьшить его не стоит. Возможным исключением будет только большая длина циркуляционного контура. Но и в этом случае нужно быть внимательным.
Но в этой же ситуации получается, что жильцы, которые произвели такую замену труб, на автоматике «украли» у своих соседей по данному стояку примерно 40% тепла и воды, проходящие по трубам. Потому стоит понимать, что толщина труб, самовольно заменяемая в тепловой системе – не вопрос частного решения, делать этого нельзя. Если стальные трубы меняются на пластиковые, расширять отверстия в перекрытиях, как ни крути, а придется.
Есть и такой вариант в данной ситуации. Можно при замене стояков в старые отверстия пропустить новые отрезочки стальных труб того же диаметра, длина их будет 50-60 см (это зависит от такого параметра, как толщина перекрытия). А потом они соединяются муфтами с пластиковыми трубами. Этот вариант вполне приемлем.
Данные как рассчитать диаметр трубы для отопления
Для расчета диаметра трубопровода понадобятся такие данные: это и общие теплопотери жилища, и протяженность трубопровода, и расчет мощности радиаторов каждой комнаты, а также способ разводки. Развода может быть однотрубной, двухтрубной, иметь принудительную или естественную вентиляцию.
К сожалению, рассчитать точно сечение труб невозможно. Так или иначе, а придется выбирать вам из пары вариантов. Этот момент стоит пояснить: к радиаторам нужно доставить определенное количество тепла, добившись при этом равномерного нагрева батарей. Если речь идет о системах с принудительной вентиляцией, то делается это при помощи труб, насоса и самого теплоносителя. Все, что нужно – это прогнать за некий временной промежуток нужное количество теплоносителя.
Получается, что можно выбрать трубы меньшего диаметра, и теплоноситель подавать с большей скоростью. Можно сделать также выбор в пользу труб большего сечения, но интенсивность подачи теплоносителя уменьшить. Предпочтителен первый вариант.
Влияние температуры на свойства теплоносителя
Кроме вышеописанных факторов температура воды в трубах теплоснабжения влияет на ее свойства. На этом основан принцип работы гравитационных систем отопления. При увеличении уровня нагрева воды происходит ее расширение и возникает циркуляция.
Теплоносители для системы отопления
Однако в случае использования антифризов превышение нормы температура в батареях отопления может привести к другим результатам. Поэтому для теплоснабжения с теплоносителем, отличным от воды, следует сначала узнать допустимые показатели его нагрева. Это не касается температуры радиаторов централизованного теплоснабжения в квартире, так как в подобных системах не применяются жидкости на основе антифризов.
Антифриз используется в том случае, если будет вероятность влияния низкой температуры на батареи отопления. В отличие от воды он не начинает переходить из жидкого состояния в кристаллообразное при достижении 0°С. Однако если работа теплоснабжения входит за нормы таблицы температур для отопления в большую сторону – могут происходить следующие явления:
- Пенообразование. Это влечет за собой увеличение объема теплоносителя и как следствие – возрастание давления. Обратный процесс при остывании антифриза наблюдаться не будет;
- Формирование известкового налета. В состав антифриза входит некоторое количество минеральных компонентов. При нарушении нормы температуры отопления в квартире в большую сторону начинается их выпадение в осадок. Со временем это приведет к засору труб и радиаторов;
- Повышение показателя густоты. Могут наблюдаться сбои в работе циркуляционного насоса, если его номинальная мощность не была рассчитана на возникновение таких ситуаций.
Поэтому намного проще следить за температурой воды в системе теплоснабжения частного дома, чем контролировать степень нагрева антифриза. Кроме этого составы на основе этиленгликоля при испарении выделяю вредный для человека газ. В настоящее время их практически не применяют в качестве теплоносителя в автономных системах теплоснабжения.
Перед заливкой в отопление антифриза следует заменить все резиновые прокладки на паранитовые. Это связано с повышенным показателем проницаемости этого типа теплоносителя.
Как проверить циркуляционный насос отопления на исправность
Проверить можно следующими способами.
Лёгкость включения
Для обследования работоспособности оборудования, рекомендуется проверить: легко ли его включить. После сезонного простоя обязательно проверяется состояние агрегата.
Для этого советуют после включения прислушаться к звукам, которые издаёт оборудование при работе. При отсутствии повреждений агрегат работает тихо.
Если слышны различные звуки, то придётся проверить загрязнённость деталей, количество воды в системе и т. д.
Наличие шумов при работе
Если циркулярный насос издаёт шумы, то он требует диагностики или полной замены. Звуки возникают из-за нарушения работы ротора или крыльчатки, что может привести в негодность всю отопительную систему.
Иногда шум появляется из-за перепада напряжения. Происходит это по причине разбалансировки и нарушения синхронизации, что ведёт к неравномерному передвижению теплоносителя.
Внимание! Диагностику проводит только специалист.
Если работа стабильна, но устройство все равно издаётся шумы, то рекомендовано проверить:
- Равна ли мощность работы агрегата первоначальным значениям. Если расчёты схожи, то теплоноситель передвигается слишком быстро или медленно, что и приводит к шумам.
- Расположен ли ротор мотора в горизонтальном положении.
Работа подшипников
Подшипники имеют свойство изнашиваться и сильно вибрировать.
Они отвечают за вращение крыльчатки, поэтому если деталь уже непригодна к использованию, то требуется её замена.
А также подшипники иногда повреждаются и издают стуки или писк. Для устранения проблемы проводится разборка и промывание. Занимается этим специальный работник.
Конструкция обратных клапанов позволяет поддерживать нужную скорость, напор и направление горячей воды в трубопроводе. Особенно актуальна их установка в системах с несколькими контурами и насосами. Отсутствие таких клапанов может привести к замедлению движения воды и нарушению ее циркуляции, поэтому не стоит экономить на их установке. Выбор клапанов соответствующих размеров и степени упругости зависит от нагрузки и вида системы отопления.
Причинами утечек воды в системе может быть некачественный монтаж труб, повреждения участков соединения в результате коррозии или поломок механического характера. При открытом типе трубопроводной системе утечки легко обнаружить при визуальном осмотре. Для выявления повреждений и проверки скрытой системы необходимо привлечь специалиста.
Устранить утечку можно подтянув и обмотав паклей ослабленное соединение, заменив протекающие узлы или вырезав и заменив поврежденные участки труб.
Расход теплоносителя в системе отопления
Расход в системе теплоносителя подразумевает массовое количество теплоносителя (кг/с), предназначаемое для подачи нужного количества тепла в обогреваемое помещение. Расчет теплоносителя в отопительной системе определяется как частное от деления расчетной тепловой потребности (Вт) помещения (помещений) на теплоотдачу 1 кг теплоносителя для обогрева (Дж/кг).
Некоторые советы по наполнению системы отопления теплоносителем на видео:
Расход теплоносителя в системе в продолжение отопительного сезона в вертикальных системах центрального отопления изменяется, поскольку они регулируются (особенно это касается гравитационной циркуляции теплоносителя — детальнее: «Расчет гравитационной системы отопления частного дома — схема «). На практике в расчетах обычно расход теплоносителя измеряют в кг/ч.
Как происходит балансировка системы отопления многоквартирного дома?
Производим аудит системы отопления с последующим восстановлением параметров теплоснабжения.
Одной из основных проблем при балансировке является отсутствие точных расходов по стоякам, известны только данные общего расхода на весь многоквартирный дом. Т.к. дома были построены давно, не исключается факт замены жильцами радиаторов отопления и внесение существенных изменений в схему теплоснабжения МКД, что влияет на расход.
Результатом балансировки должна быть температура одного значения в контрольных точках. Контрольными точками следует выбирать обратный трубопровод каждого стояка. По температуре обратного стояка можно понять, какая температура батареи у последнего потребителя.
Цели гидравлического расчета
Цели гидравлического расчета заключаются в следующем:
- Подобрать оптимальные диаметры трубопроводов.
- Увязать давления в отдельных ветвях сети.
- Выбрать циркуляционный насос для системы отопления.
Раскроем подробнее каждый из этих пунктов.
1.
Подбор диаметров трубопроводов
Если система разветвлённая – есть короткая и длинная ветка, то на длинной ветке идёт большой расход, а на короткой — меньший. В этом случае короткая ветка должна выполняться из труб меньших диаметров, а длинная ветка должна выполняться из труб большего диаметра.
И, по мере уменьшения расхода, от начала к концу ветки диаметры труб должны уменьшаться так, чтобы скорость теплоносителя была примерно одинакова.
2.
Увязка давлений в отдельных ветвях сети
Увязка может производиться подбором соответствующих диаметров труб или, если возможности этого способа исчерпаны, то за счёт установки регуляторов расхода давления или регулировочных вентилей на отдельных ветвях.
Регулировочная арматура может быть разной.
Бюджетный вариант — ставим регулировочный вентиль — т.е. вентиль с плавной регулировкой, который имеет градацию в настройке. Каждый вентиль имеет свою характеристику. При гидравлическом расчёте проектировщик смотрит, какое давление необходимо погасить, и определяется так называемая невязка давлений между длинной и короткой ветками. Тогда по характеристике вентиля проектировщик определяет, на сколько оборотов этот вентиль, от полностью закрытого положения, надо будет открыть. Например, на 1, на 1.5 или на 2 оборота. В зависимости от степени открытия вентиля будет добавляться разное сопротивление.
Более дорогой и сложный вариант регулировочной арматуры — т.н. регуляторы давления и регуляторы расхода. Это устройства, на которых мы задаём необходимый расход или необходимый перепад давлений, т.е. падение давлений на этой ветке. В этом случае устройства сами контролируют работу системы и, если расход не соответствует требуемому уровню, то они открывают сечение, и расход увеличивается. Если расход слишком большой, то сечение перекрывается. Аналогично происходит и с давлением.
Если все потребители после ночного понижения теплоотдачи одновременно открыли утром свои отопительные приборы, то теплоноситель попытается, в первую очередь, поступать в ближние к тепловому пункту приборы, а до дальних дойдет спустя часы. Тогда сработает регулятор давления, прикрывая ближайшие ветки и, тем самым, обеспечит равномерное поступление теплоносителя во все ветки.
3.
Подбор циркуляционного насоса по давлению (напору) и по расходу (подаче)
Если в системе стоит несколько циркуляционных насосов, то в случае их последовательного монтажа у них суммируется напор, а расход будет общим. Если насосы работают параллельно, то у них суммируется расход, а напор будет одинаковым.
Важно: Определив в ходе гидравлического расчёта потери давления в системе, можно выбрать циркуляционный насос, который оптимально будет соответствовать параметрам системы, обеспечивая оптимум затрат – капитальных (стоимость насоса) и эксплуатационных (стоимость электроэнергии на циркуляцию)
Оптимальные значения в индивидуальной системе отопления
Автономное отопление помогает избегать многих проблем, которые возникают с централизованной сетью, а оптимальная температура теплоносителя может регулироваться в соответствии к сезону. В случае индивидуального отопления под понятие нормы включают теплоотдачу прибора отопления на единицу площади помещения, где стоит этот прибор. Тепловой режим в данной ситуации обеспечивается конструктивными особенностями отопительных приборов.
Важно следить, чтобы носитель тепла в сети не остужался ниже 70 °С. Оптимальным считают показатель 80 °С
С газовым котлом контролировать нагрев легче, потому что производители ограничивают возможность нагрева теплоносителя до 90 °С. Используя датчики для регулировки подачи газа, нагрев теплоносителя можно регулировать.
Немного сложнее с аппаратами на твердом топливе, они не регулируют подогрев жидкости, и запросто могут превратить ее в пар. А уменьшить жар от угля или древесины поворотом ручки в такой ситуации невозможно. Контроль нагрева теплоносителя при этом достаточно условный с высокими погрешностями и выполняется поворотными термостатами и механическими заслонками.
Электрические котлы позволяют плавно регулировать нагрев теплоносителя от 30 до 90 °С. Они оснащены отличной системой защиты от перегрева.
Согласование температуры воды в котле и системе
Существует два варианта, как можно согласовать высокотемпературные теплоносители в котле и более низкотемпературные в отопительной системе:
- В первом случае следует пренебречь эффективностью функционирования котла и на выходе из него выдавать теплоноситель такой степени нагрева, которая требуется системе в настоящее время. Так поступают в работе небольших котельных. Но в итоге получается не всегда подавать теплоноситель в соответствии с оптимальным температурным режимом согласно графику (прочитайте: «График отопительного сезона — начало и конец сезона «). В последнее время все чаще в небольших котельных на выходе монтируют регулятор нагрева воды с учетом показаний, который фиксирует датчик температуры теплоносителя.
- Во втором случае, нагрев воды для транспортировки по сетям на выходе из котельной делают максимальным. Далее в непосредственной близости от потребителей производится автоматическое регулирование температуры теплоносителя до необходимых значений. Такой способ считается более прогрессивным, его применяют на многих крупных теплосетях, а поскольку регуляторы и датчики стали дешевле, его все чаще используют на небольших объектах теплоснабжения.
Этапы проектирования отопительных систем
Гидравлический вместе с тепловым расчетом считаются одними из базовых в процессе создания работоспособной внутридомовой системы теплоснабжения. Главная задача гидравлического расчета — обеспечить соответствие расчётных расходов с ее реальными рабочими показателями. Объем теплоносителя, циркулирующего в сети должен сформировать устойчивый тепловой баланс, обеспечивающий необходимую санитарную температуру внутри здания.
Гидравлический расчет системы отопления состоит из системы вычислений, способных установить важные характеристики тепловой сети:
- Минимально допустимые внутренние диаметры труб и объем теплоносителя, который способен пропустить выбранный сортамент и типоразмер трубопроводов;
- все гидравлические потери на рассчитываемых участках;
- условия гидромеханической наладки;
- общие потери напора воды;
- оптимизированный объем воды.
В соответствии с полученными расчетными данными, выполняют подбор электронасосов и типоразмеры прямых и обратных труб.
Нормы температуры
- ДБН (В. 2.5-39 Тепловые сети);
- СНиП 2.04.05 «Отопление вентиляция и кондиционирование».
Для расчетной температуры воды в подаче принимается та цифра, которая равняется температуре воды на выходе из котла, согласно его паспортным данным.
Для индивидуального отопления решать, какая должна быть температура теплоносителя, следует с учетом таких факторов:
- 1 Начало и завершение отопительного сезона по среднесуточной температуре на улице +8 °C на протяжении 3 суток;
- 2 Средняя температура внутри отапливаемых помещений жилищно-коммунального и общественного значения должна составлять 20 °C, а для промышленных зданий 16 °C ;
- 3 Средняя расчетная температура должна соответствовать требованиям ДБН В.2.2-10, ДБН В.2.2.-4, ДСанПиН 5.5.2.008, СП №3231-85.
Согласно СНиП 2.04.05 «Отопление вентиляция и кондиционирование» (пункт 3.20) предельные показатели теплоносителя такие:
- 1 Для больницы – 85 °С (исключая психиатрические и наркоотделения, а также помещения административного или бытового назначения);
- 2 Для жилых, общественных, а также бытовых сооружений (не считая залы для спорта, торговли, зрителей и пассажиров) – 90 °С;
- 3 Для зрительных залов, ресторанов и помещений для производства категории А и Б – 105 °С;
- 4 Для предприятий общепита (исключая рестораны) – это 115 °С;
- 5 Для помещений производства (категория В, Г и Д), где выделяется горючая пыль и аэрозоли – 130 °С;
- 6 Для лестничных клеток, вестибюлей, переходов для пешеходов, техпомещений, жилых зданий, помещений производства без наличия загорающейся пыли и аэрозолей – 150 °С.
В зависимости от внешних факторов, температура воды в системе отопления может быть от 30 до 90 °С. При нагреве свыше 90 °С начинают разлагаться пыль и лакокрасочное покрытие. По этим причинам санитарные нормы запрещают осуществлять больший нагрев.
Для расчета оптимальных показателей могут быть использованы специальные графики и таблицы, в которых определены нормы в зависимости от сезона:
- При среднем показателе за окном 0 °С подача для радиаторов с различной разводкой устанавливается на уровне от 40 до 45 °С, а температура обратки – от 35 до 38 °С;
- При -20 °С на подачу осуществляется нагрев от 67 до 77 °С, а норма обратки при этом должна быть от 53 до 55 °С;
- При -40 °С за окном для всех приборов отопления ставят максимально допустимые значения. На подаче это – от 95 до 105 °С, а на обратке – 70 °С.
Схема разводки отопительной системы и диаметр труб для отопления
Схема разводки отопления всегда учитывается. Она может быть двухтрубной вертикальной, двухтрубной горизонтальной и однотрубной. Двухтрубная система предполагает как верхнее, так и нижнее размещение магистралей. А вот однотрубная система учитывает экономное использование длины магистралей, таковая подходит для отопления с естественной циркуляцией. Тогда двухтрубная потребуют обязательного включения насоса в схему.
Горизонтальная разводка бывает трех типов:
- Тупиковая;
- Лучевая или коллекторная;
- С параллельным движением воды.
К слову, в схеме однотрубной системы может быть и так называемая обходная труба. Она станет дополнительной магистралью для циркуляции жидкости, если отключился один или несколько радиаторов. Обычно на всякий радиатор устанавливаются запорные краны, которые позволяют перекрыть водную подачу в случае необходимости.
Выбор ключевого контура
Гидравлическая стрелка разделяет котловые и отопительные контура
Тут нужно рассматривать отдельно две схемы — однотрубную и двухтрубную. В первом варианте расчет необходимо вести через самый нагруженный стояк, где установлено приличное количество радиаторов и арматуры запорной.
В другом варианте подбирается самый загруженный контур. Собственно на его основе и необходимо делать подсчет. Все другие контуры станет иметь гидравлическое сопротивление намного меньше.
К примеру, если рассматривается горизонтальная развязка труб, то подбирается самое загруженное кольцо цокольного этажа. Под загруженностью знают нагрузку тепла.
Скорость теплоносителя
Схематический расчет
Существует минимальная скорость горячей воды внутри отопительной системы, при которой само отопление работает в оптимальном режиме. Это 0,2-0,25 м/с. Если она уменьшается, то из воды начинает выделяться воздух, что ведет к образованию воздушных пробок. Последствия — отопление не будет работать, и котел закипит.
Это нижний порог, а что касается верхнего уровня, то он не должен превышать 1,5 м/с. Превышение грозит появлением шумов внутри трубопровода. Наиболее приемлемый показатель — 0,3-0,7 м/с.
Если необходимо провести точный подсчет скорости движения воды, то придется принять во внимание параметры материала, из которого изготовлены трубы. Особенно в этом случае учитывается шероховатость внутренних поверхностей труб
К примеру, по стальным трубам горячая вода движется со скоростью 0,25-0.5 м/с, по медным 0,25-0,7 м/с, по пластиковым 0,3-0,7 м/с.
Принцип работы регуляторов отопления
Регулятор температуры теплоносителя, циркулирующего в отопительной системе — это прибор, с помощью которого обеспечивается автоматический контроль и корректировка температурных параметров воды.
Состоит данное устройство, изображенное на фото, из следующих элементов:
- вычислительный и коммутирующий узел;
- рабочий механизм на трубе подачи горячего теплоносителя;
- исполнительный блок, предназначенный для подмеса теплоносителя, поступающего из обратки. В ряде случаев устанавливают трехходовой кран;
- повысительный насос на участке подачи;
- не всегда повысительный насос на отрезке «холодного перепуска»;
- датчик на линии подачи теплоносителя;
- клапаны и запорная арматура;
- датчик на обратке;
- датчик температуры наружного воздуха;
- несколько датчиков температуры помещения.
Теперь необходимо разобраться, как происходит регулирование температуры теплоносителя и как функционирует регулятор.
На выходе из отопительной системы (обратке) температура теплоносителя зависит от объема воды, прошедшей через нее, поскольку нагрузка является относительно постоянной величиной. Прикрывая подачу жидкости, регулятор тем самым увеличивает разность между линией подачи и обраткой до требуемого значения (на данных трубопроводах устанавливают датчики).
Когда наоборот необходимо увеличить поток теплоносителя, тогда в систему теплоснабжения врезают повысительный насос, которым тоже управляет регулятор. С целью понижения температуры водяного входящего потока применяют холодный перепуск», который означает, что часть носителя тепла, уже проциркулировавшего по системе, вновь направляют на вход.
В результате регулятор, перераспределяя потоки теплоносителя в зависимости от данных, зафиксированных датчиком, обеспечивает соблюдение температурного графика отопительной системы.
Нередко такой регулятор комбинируют с регулятором горячего водоснабжения с помощью одного вычислительного узла. Прибор, регулирующий ГВС, проще в управлении и в части исполнительных механизмов. При помощи датчика на линии горячего водоснабжения выполняется регулировка прохода воды через бойлер и в итоге она стабильно имеет стандартные 50 градусов (прочитайте: «Отопление через водонагреватель «).
Элементы конструкции насоса
Для того чтобы эксплуатация циркуляционного насоса была беспроблемной, необходимо регулярно производить проверку состояния оборудования. Профилактический осмотр поможет выявить негативные факторы, способные привести в дальнейшем к серьезным поломкам. Их своевременное устранение позволит избежать форс-мажорных ситуаций и сложных ремонтных процедур.
Стандартный осмотр включает в себя несколько простых шагов:
- проверка герметичности соединений. Необходимо тщательно осматривать все фитинги, с помощью которых насос прикреплен к системе отопления. Некоторые разновидности соединительных элементов могут ослабевать со временем, поэтому их необходимо подтягивать. Кроме того, могут возникнуть проблемы с разрушением резьбы или уплотнителя — в таком случае, нужно раскрутить фитинг, нарезать дополнительные витки или намотать новый слой ФУМ-ленты, а затем собрать элемент заново;
- добавление смазки. Внутри прибора находятся подшипники, которые должны быть хорошо смазаны. В противном случае они будут хуже работать, что приведет к перегреву устройства;
- очистка фильтра. Сетчатый элемент постепенно забивается грязью даже в том случае, если вы используете очень качественный теплоноситель. Поэтому необходимо своевременно удалять частицы ржавчины и накипи, застревающие в фильтре.
Собственно, это и есть базовый набор действий, которые необходимо выполнять для профилактики. Кроме того, следует соблюдать некоторые правила эксплуатации циркуляционного насоса:
- не допускать «сухого хода». Включение насоса должно производиться только в том случае, если в отопительной системе присутствует необходимое количество теплоносителя. Работающее «всухую» оборудование очень быстро перегорит, да еще и может утянуть за собой некоторые другие электроприборы;
- не допускать длительного простаивания. Во многих регионах система отопления работает в сезонном режиме — с сентября по май. Понятно, что запускать ее в тридцатиградусную жару нет смысла. Но при таком долгом простаивании некоторые элементы циркуляционного насоса могут выйти из строя. Поэтому его необходимо включать хотя бы раз в месяц на четверть часа. Согласитесь, времени занимает немного, зато поможет избежать возможных проблем в дальнейшем;
- изначально приобретать насос, характеристики которого полностью соответствуют потребностям вашей отопительной системы. Бывает так, что хозяева, в попытках сэкономить, покупают маломощный прибор и пытаются использовать его в системе с большим объемом теплоносителя. В результате, устройство постоянно работает на пределе своих возможностей и, конечно, очень быстро выходит из строя. Вот почему важно заранее произвести расчеты параметров, на которые следует ориентироваться при покупке. О том, как это сделать, вы можете найти информацию на нашем портале;
- предусмотреть наличие датчиков перегрева и «сухого хода». Эти регуляторы есть не на всех моделях, но желательно найти и приобрести прибор именно с ними. Самостоятельно вы можете не сразу заметить возникшую проблему. Например, если в системе произошла утечка теплоносителя, то пока вы ее обнаружите, насос будет работать вхолостую и может просто сгореть. А датчик среагирует мгновенно, автоматически отключив оборудование, и тем самым предотвратит поломку.
Рекомендации при выборе и эксплуатации
Делая выбор теплоносителя для системы отопления, стоит знать, что не все отопительные системы способны работать с антифризом. Многие производители не допускают возможности его использования в виде теплоносителя, зачастую это служит поводом для отказа в гарантийном обслуживании оборудования.
Перед тем как заполнить систему отопления теплоносителем, нужно тщательно изучить его особенности, такие как:
- состав, назначение и виды присадок;
- температура замерзания;
- длительность эксплуатации без замены;
- взаимодействие антифриза с резиной, пластиком, металлом и т.д.;
- безвредность для здоровья и экологическая безопасность (замена теплоносителя в системе потребует его слить).
Меньший, чем у воды, коэффициент поверхностного натяжения придает ему текучесть и позволяет с легкостью проникнуть в поры и микротрещины. Все соединения нужно уплотнить тефлоновыми, паронитовыми или из стойкой резины прокладками. Бессмысленно использовать в системе отопления элементы с цинковым покрытием. В результате химической реакции оно будет уничтожено за время первого отопительного сезона.
Расчет показывает, что из-за низкой теплоемкости антифриз медленнее накапливает и отдает теплоэнергию, поэтому необходимо использовать трубы с увеличенным диаметром и повысить количество секций радиаторов. Циркуляция теплоносителя в системе затрудняется повышенной вязкостью антифриза, что снижает КПД. Устраняется это путем замены насоса на более мощный.
Предварительный расчет поможет правильно спроектировать отопительный контур и позволит узнать необходимый объем теплоносителя в системе.
Недопустимо превышать температуру теплоносителя в системе отопления больше заявленной производителем. Даже кратковременно увеличенная температура теплоносителя ухудшает его параметры, приводит к распаду присадок и возникновению нерастворимых образований в виде осадка и кислот. При попадании на нагревательные элементы осадка возникает нагар. Кислоты, вступая в реакцию с металлами, способствуют образованию коррозии.
Срок эксплуатации антифриза зависит исключительно от выбранного режима и составляет 3-5 лет (до 10 сезонов). Перед его заменой необходимо промыть всю систему и котел водой.
Расчет расширительного бака
Чтобы произвести расчет расширительного бака для закрытой системы отопления, необходимо выяснить, насколько увеличивается объем жидкости при ее нагреве от комнатной температуры +20 ºС до рабочей, находящейся в пределах 50—80 ºС. Эта задача тоже не из простых, но ее можно решить другим способом.
Вполне корректным считается принимать объем бака в размере десятой части от всего количества воды в системе, включая радиаторы и водяную рубашку котла. Поэтому снова открываем паспорта оборудования и находим в них вместительность 1 секции батареи и котлового бака.
Далее, расчет объема теплоносителя в системе отопления выполняется по простой схеме: вычисляется площадь поперечного сечения трубы каждого диаметра и умножается на ее длину. Полученные значения суммируются, к ним прибавляются паспортные данные, а потом от результата берется десятая часть. То есть, если во всей системе 150 л воды, то вместительность расширительного бака должна составлять 15 л.