Управление водяным теплым полом: блок управления, автоматика

Структура водяного пола

Типовую систему пола с водяным обогревом можно условно разделить на две части, одну из которых составит непосредственно отопительный блок, а вторую – контрольно-управляющая инфраструктура. Рабочая часть с теплоносителем содержит следующие элементы:

  • Подложка на черновой поверхности, которая образует конструкционную основу для укладки контуров распределения тепла.
  • Гидроизоляция с демпферной лентой.
  • Теплоизоляция, которая препятствует уходу тепла в тыл.
  • Теплопроводящие трубы.
  • Финишный слой конструкционного покрытия.

Регуляция работы теплопроводящих контуров обеспечивается посредством узла управления водяным теплым полом, который также состоит из нескольких функциональных частей, заслуживающих отдельного внимания.

Сервоприводы для коллектора

При напольном отоплении трубопровод подключают к коллектору. Оборудование имеет выходы для горячего теплоносителя и для охлаждённой жидкости, которая нагнетается в котёл. Количество выходов в коллекторе соответствует количеству контуров водяного обогрева. В магистраль подаётся теплоноситель определённой температуры. Сервоприводы призваны её регулировать, посредством вентилей, расположенных на коллекторе.

Рекомендуем: Как устанавливается демпферная лента для тёплого пола?

Блок управления тёплого пола имеет следующие составные части:

  • пружина, выполненная из нихрома; через неё проходит электрический ток;
  • ёмкость с терможидкостью; она нагревается посредством нихромовой пружины;
  • шток, к которому прикреплены клапаны холодного контура;
  • термодатчик; устройство устанавливают на жидкостном контуре тёплого пола;
  • терморегулятор; его программируют на определённый режим; к нему подключается датчик температуры и кабель сервопривода.

На терморегуляторе задают определённый режим обогрева. Если температура пола превышает установленный параметр, то терморегулятор замыкает цепь сервопривода. Начинает нагреваться пружина, которая находится в терможидкости.

Жидкость расширяется и давит на шток, который открывает клапан для холодного контура. В смесительной камере горячий теплоноситель и охлаждённая вода смешиваются. Тёплая жидкость поступает в напольную магистраль.

При снижении установленной температуры термостат размыкает цепь сервопривода. Пружина начинает остывать, терможидкость охлаждаться и сужается. Шток поднимается и перекрывает выход для холодного контура. Систему для тёплого пола устанавливают в Москве для обогрева загородных коттеджей.

При использовании сервопривода терможидкость нагревается и остывает быстро. Система изменяет режим работы за 1-3 мин. Термоголовка на смесительном узле отключает систему отопления в течение 15 мин. Автомат на тёплый пол посредством сервоприводов может управлять дистанционно, с помощью электронных гаджетов.

Устройство управляющего узла

В комплектации теплового пола с водяным трубопроводом поставляется смесительно-нагревательный узел, который в зависимости от конструкции может подключаться к одному или нескольким отопительным контурам. Его основу формирует нагревательный элемент мощностью от 1000 до 1500 Вт, коллекторная группа и циркуляционный насос. В дополнение к этому узлу можно подключать интеллектуальную систему управления водяным теплым полом.

Совет от специалистов: систему регуляции следует делать как можно более сегментированной с точки зрения уровней подключения запорной арматуры. Это значит, что управление должно обеспечиваться и механическими элементами контроля, и термостатом в комбинированном варианте. Причем запорно-пусковую арматуру желательно размещать по всем контурам в отдельном порядке, что сделает систему более громоздкой, но зато повысит надежность управления в аварийных режимах.

Регулировка водяных теплых полов

Чем заливать теплый пол водяной

Если рассматривать, как регулировать теплый пол водяного типа, можно сразу отметить сложность применяемых методик, в сравнении с электрическим отоплением. В частности:

  • используется метод плавной регулировки температуры воды в системе, поскольку резкие броски приводят к завоздушиванию;
  • есть несколько схем подмешивания горячего теплоносителя в контур отопления;
  • предполагается устройство отдельной системы циркуляции для каждой контрольной зоны квартиры или дома;
  • есть вариант использования полуавтоматических средств поддержания температуры теплоносителя одновременно с терморегуляторами.

Рассмотрим несколько схем управления теплыми полами водяными, начиная от самой простой.

  1. Изменение потока теплоносителя механическим способом. Эта система регулировки представляет собой (со стороны пользователя) простой кран. Путем его открывания или неполного закрывания меняют общую отдачу тепла. Фактически, механическая система регулирования сложнее, чем кран, но принцип управления — аналогичен его работе. Приведенная схема мало пригодна, если в доме один главный циркуляционный насос. Механическая система будет влиять на эффективность отопления всех помещений.
  2. Управление нагнетателем. Путем включения и выключения циркуляционного насоса поддерживаются необходимые параметры теплоносителя в трубах. Коммутация может происходить как по сигналу терморегуляторов, так и в соответствии с параметрами датчика, установленного в контуре отопления. Для того, чтобы добиться отдельной регулировки микроклимата в отдельно взятой комнате, придется обустроить собственные структуры прохода воды в каждой из них, оснащенные нагнетателями. Если этого не сделать, главный циркуляционный насос в некоторые моменты времени способен отключать отопление во всем доме.
  3. Термоголовка может выступать эффективным полуавтоматическим средством регулировки температуры. Она неудобнее в сравнении с настенным терморегулятором, работает по следующему принципу: открывает подачу нагретой воды, если показатели температуры в контрольном контуре падают и наоборот — перекрывает ее при достижении установленного предела. Термоголовка управляет трехходовым клапаном.

Перечисленные методики относятся к так называемым одноточечным схемам управления. Они регулируют работу отдельной трассы циркуляции или зоны отопительной системы. К более продвинутым методам относятся сервоприводные распределители. В зависимости от показателей датчиков, такие устройства могут перераспределять поток нагретой воды в отдельные контролируемые зоны.

Функция циркуляционного насоса

Рабочий процесс водяного пола начинается с доставки воды из центрального водопровода и повышения ее температуры в нагревателе. Далее уже готовый теплоноситель необходимо распределить по проложенным контурам. Эту задачу и выполняет циркуляционный насос. В системе управления водяным теплым полом у данного оборудования есть свои вспомогательные задачи, выходящие за рамки регуляции скорости распределения потоков. К примеру, насос может обеспечиваться датчиками расхода воды, фиксировать критические показатели давления и в некоторых конфигурациях выполнять задачи запорной арматуры. Этот набор функций зависит от устройства насоса и способа его размещения. К слову, комплексные системы, в которых один узел управления охватывает несколько отопительных систем (бойлеры, радиаторы, ГВС), имеют в составе несколько циркуляционных насосов для обеспечения достаточной мощности распределения в нескольких зонах доставки теплоносителя.

Назначение прибора

В систему водяной теплый пол терморегулятор встроен не только для выполнения функции поддержки указанных параметров температуры. Главное его назначение состоит в защите теплового кабеля от перегревания. Достигая нужной температуры в указанной системе, регуляторный прибор с помощью автоматики производит отключение всей конструкции от питания. Это свойство присуще любым видам данных устройств – от очень дорогостоящих вариантов до бюджетных аналогов.

К основополагающим преимуществам терморегуляторов относятся такие:

  • • индивидуальная настройка температуры в отдельной комнате или, например, только зоне отдыха. Такое решение дает оптимальный тепловой уровень комфорта;
  • • простота при устанавливании и подключении;
  • • возможность комплексного управления от внешнего таймера;
  • • низкая себестоимость при сопоставлении со стандартными формами отопления;
  • • достаточно высокий уровень качества материалов;
  • • функциональные возможности позволяют подобрать индивидуальную систему из разных видов;
  • • точное поддержание температуры позволяет экономить 30-35% от общего потребления энергии.

Управление с сервоприводом

Механическая контрольно-управляющая инфраструктура сегодня реализуется на базе сервопривода, позволяющего регулировать потоки теплоносителя путем закрытия и открытия коллекторных вентилей. Существует два типа данных регуляторов – с нормально закрытым и нормально открытым клапаном. Разница между ними заключается в принципе взаимодействия устройства с электрическим напряжением. В системе закрытого типа клапан открывается только при подаче напряжения, а нормально открытый механизм контроля закрывается, когда подается аналогичный электрический сигнал.

Наибольшее распространение получили системы управления водяным теплым полом сервоприводом с датчиком температуры, которые позволяют в одном механическом узле отслеживать и показатели нагрева. Однако дополнение опцией термометра носит скорее косметический характер, так как в автоматических термостатах такие же датчики реализуются с более широким функционалом. Сама по себе концепция механического регулятора с интегрированными приборами измерения устарела.

Но так ли хорош принцип управления водяным теплым полом с сервоприводом без датчика температуры? Несмотря на отсутствие функции температурного индикатора, приводной механизм вполне может выполнять основную задачу, принимая сигналы о температурных показаниях от термостата. Главное, что должен выполнять сервопривод – это точная механическая регуляция состояния клапанов.

Общее описание достоинств и возможностей регулирования

Терморегулирующие блоки представляют собой простое контрольное устройство, оснащенное двумя датчиками. Изменение температуры в комнате может производиться:

  • методом включения нагревательных кабелей или пленок, если используется электрический теплый пол;
  • методом пуска циркуляционного насоса, если рассматривать простейшую систему управления водяным полом;
  • контроллер может управлять трехходовыми клапанами для подмешивания горячего теплоносителя в систему или отдельный контур теплых полов.

Самая простая схема, по которой осуществляется управление теплым полом водяным, построена на перекрывающей арматуре. В контуры отопления установлены краны. Хозяин квартиры самостоятельно регулирует температуру в комнатах, управляя количеством жидкости, циркулирующей в системе. О точном поддержании параметров микроклимата речь не идет — все управляется по принципу «еще холодно — нормально — уже жарко».

Применять управление теплыми полами на кранах не рекомендуется. По отзывам владельцев, может возникать завоздушивание системы и снижение ее эффективности. Вероятность развития такого процесса не поддается точной оценке. Все зависит от сложности системы и мощности нагревательного оборудования.

Более сложная система управления теплым полом обязательно включает средства автоматического контроля. Если речь идет об электрическом отоплении — применяются двухдатчиковые регуляторы, определяющие одновременно температуру кабеля или пленочного нагревателя, а также — воздуха в комнате на расстоянии от пола (рекомендуется – не менее 120 см). Управление теплым полом водяным строится на использовании разных методик, некоторые из которых основаны на применении простейших коммутаций включения — выключения циркуляционных насосов.

Кроме контроля внутреннего микроклимата, блок управления теплым полом может подстраивать параметры теплоотдачи согласно температуре воздуха снаружи. Подобная система дорогая и включает в себя группы датчиков, расположенных вне дома или квартиры. Однако после того, как произведена настройка блока управления — можно наслаждаться комфортом в комнатах в любую погоду, в любое время года.

Контроллер, управляющий температурой в комнате или регулирующий микроклимат в квартире, может программироваться. К примеру, давать команду на интенсивный прогрев помещений к моменту прихода хозяев с работы, а в определенные часы переводить теплый пол в минимальный режим.

Блок управления для водяного пола

Базовый электронный компонент управления, обеспечивающий эргономичное взаимодействие пользователя с функционалом водяного пола. В основу данного блока заложен принцип регуляции температуры воды, который реализуется за счет нагревательного элемента. В отзывах об управлении водяным теплым полом через температурные регуляторы многие подчеркивают удобство работы с моделями, обеспеченными ЖК-дисплеем и сенсорными кнопками. Обычно электронные термостаты критикуют за низкую точность регуляции даже по сравнению с механическими аналогами, однако современные модификации блока управления позволяют осуществлять настройку вплоть до 1 градуса.

Смесительный узел для системы теплого водяного пола

Температурный режим нагрева носителя (в данном случае используется вода), для теплого пола гораздо ниже, чем для радиаторов. Основной принцип работы смесителей в том, чтобы добиваться понижения температуры теплоносителя путем смешивания обратки – уже отдавшей свое тепло воды, с подогретой до высокой температуры.

Для создания и поддержки стабильной циркуляции воды в системе теплого пола, в основном используют двухходовые или трехходовые клапаны. Допускается их замена термостатическими смесителями. В случае недостаточной скорости воды, в систему устанавливают циркулярный насос.

Конструкция смесительного узла для водяного пола предусматривает размещение насоса между коллектором подачи и трубой подвода. Дополнительно устанавливается еще один выход – для вывода воды из отдающего коллектора.

Смеситель для теплого водяного пола значительно улучшает работу всей системы и позволяет автоматически корректировать температуру нагрева носителя в зависимости от изменения погодных условий. Для этого электропривод, который устанавливается на двухходовом клапане, подключают к регулятору температуры.

Возможна работа смесительного узла в ручном режиме. В этом случае блок задействован без установки клапанов, а показатели подмеса определяются методом подбора

Такой способ нужно внедрять с осторожностью, он не подходит для источников тепла с высокой температурой.

Ограничения максимальной температуры можно добиться при помощи установки термостатической головки, помещенной на клапан и имеющей датчик выносного типа.

Смесители разделяются на две группы. К первой относятся устройства, оснащенные трехходовыми клапанами с сервоприводами. С их помощью можно настроить управление контроллеров, реагирующих на изменения погоды и термостатичными устройствами. В работе узла есть возможность неожиданного сбоя, когда по сигналу термостата клапан может открыться и горячая вода, достигающая температуры в 90 °C, поступит в систему. Такое повышение температуры иногда приводит к частичному разрыву труб. У трехходовых клапанов высокая скорость пропуска водяного потока, что требует особой тщательности в настройке всей системы теплого пола. Но все же эта группа смесительных узлов довольно востребована для обустройства водяного пола в очень больших помещениях.

При установке смесителей, относящихся ко второй группе, используют двухходовые клапаны, отличающиеся невысокой скоростью пропуска теплоносителя. Смешивание горячего и холодного потоков весьма стабильно, что допускает плавную регулировку процесса. Такие смесители устанавливают в системах водяных полов, площадь которых не превышает 200 кв.м.

Реализация автоматики

Системы автоматического управления являются своего рода надстройкой на электронных термостатах, расширяющей их базовые возможности. Ключевое отличие автоматической регуляции заключается в возможности автономной эксплуатации системы. В частности, современные регуляторы работают по принципу пропорционально-интегрального управления, что означает независимый учет и принятие решений об установке температурного режима на основе текущих исходных данных по температуре и давлению. Вместе с этим сохраняется и полный инструментарий контролирующих функций со стороны пользователя. Наряду с прямой механической или электронной регуляцией владелец может использовать средства дистанционного управления водяным теплым полом с телефона по каналу Wi-Fi или по сотовой связи. Сам же автоматический термостат может вести статистику показателей по сезонам, делая прогнозы о возможных будущих изменениях в настройках по заданным алгоритмам.

Управление в системе Fibaro

Компания Fibaro предлагает специализированное решение для управления функциями водяного пола в виде комплекта Z-Wave. Система включает в себя контрольную панель, термостатический блок и программный ПИД-регулятор, в котором можно настраивать график работы напольного обогревателя по дням и неделям в определенных режимах. Разумеется, никуда не девалась и функция интеллектуального контроля температурного режима, которая выполняется на основе информации комплектного датчика на проводе. К рабочим особенностям системы управления водяным теплым полом от Fibaro можно отнести расширенные возможности охлаждения и опцию «Антифриз», которая активизирует нагрев автоматически, даже если он был выключен принудительно. Эта возможность реализована из соображений безопасности, так как при определенных (крайне низких) температурах возможна заморозка контуров с теплоносителем.

Электрический подогрев

Водяной теплый пол под ламинат

Для управления нагревом пола используют механические и электронные термостаты, которые с помощью выносного щупа снимают показания и поддерживают температуру на заданном уровне, в не зависимости от окружающей среды и времени суток.

Программируемые терморегуляторы позволяют включать подогрев поверхности в заданное время, дни и недели, и благодаря этому получать значительную экономию. Они снабжены такими функциями, как утренний подъем, рабочий день, вечер, подготовка ко сну. Некоторые модели оснащены функцией антизамерзания, поддерживая в помещении минимальную положительную температуру, тем самым препятствуя промерзанию помещения при отсутствии людей.

Имеются спаренные контролеры термостаты, позволяющие с одного места производить управление электрическими теплыми полами в разных помещениях. Данные устройства позволяют сэкономить на покупке одного контролера, вместо нескольких отдельных экземпляров, что в денежном эквиваленте будет намного дороже.

Модели термоконтролеров с радиодоступом позволяют работать с четырьмя отдельными модулями. Показания с датчиков выводятся на дистанционный пульт и имеется возможность отслеживать температуру пола и воздуха в комнатах. Электронные многозональные программируемые микроконтроллеры с доступом по радиоканалу объединяются в исполнительные модули, состоящие из отопительных элементов теплый пол и электрических радиаторов. Такие устройства подключаются в систему умный дом и позволяют мониторить режимы в каждой комнате по отдельности, а также устанавливать дни, недели, время работы.

В данный момент на рынке появились встраиваемые модули MCS 300. Данное устройство может использоваться для управления электрическим отоплением через wifi интерфейс. В домашней сети через вай фай роутер, позволяет подключаться к таким устройствам через специальные программы из любой точки земного шара. С помощью программы можно одновременно взаимодействовать с 32 термостатами. Доступ к устройствам из нескольких мест, в том числе через интернет. Посредством мобильного телефона, планшета или компьютера устанавливается режим работы, время и градусы.

Более подробно узнать о дистанционном управлении электрическими теплыми полами вы можете, просмотрев данное видео:

Помимо MCS 300, применяются устройства для управления через сеть GSM, посредством смс команд. Данный пульт является частью умного дома и позволяет получать оперативную информацию о состоянии датчиков через сообщения, такие как проникновение, температура, освещение, потребление ресурсов (например, вода и свет). Также через смс команды можно заблаговременно включить подогрев полов, бойлер и прочее.

Управление в системе Danfoss

Производитель отопительного оборудования и комплектующих Danfoss также предлагает специальные комплекты для управления напольным обогревом. В данном семействе особенно удачно реализуются механическая инфраструктура организации водяного отопления с узлом смешения и коллекторной группой. Это решение подойдет для домов, где планируется организовывать комплексный обогрев вместе с радиаторами. Техническую основу для управление водяным теплым полом Danfoss представляет распределительная гребенка, к которой подключается узел смешения. Такая конфигурация выгодна тем, что в процессе эксплуатации пола оптимальная температура работы теплоносителя составляет 35-40 ˚С. В процессе смешивания горячей воды от котла и отработанных охлажденных потоков от радиаторного блока достигается оптимальный режим нагрева, не требующий корректировки. Конкретные параметры пользователь также устанавливает с помощью электронного термостата, в том числе идущего в комплекте с водяным полом.

Немного расчетов

Как сделать теплый пол от отопления Теплый пол водяной. Монтаж теплого пола
Далее мы расскажем, как осуществляется расчет теплого пола электрического. Для начала необходимо вычислить площадь – для этого расчерчиваем на бумаге план домовладения, отмечаем, где будет стоять мебель (нужно знать хотя бы ее ориентировочные размеры). Считаем площадь каждой комнаты в отдельности, так как мы рекомендуем сделать по одному контуру для каждого помещения – так легче регулировать температуру и легче экономить электроэнергию (просто отключая ненужные контуры).

Используя термостат, Вы сможете с точностью до градуса настроить нужную и приемлемую именно для Вас температуру.

На следующем этапе определяемся с выбором материала и знакомимся с такой характеристикой, как мощность. Например, выбирая электрический кабель, мы можем приобрести небольшую бухту под обогрев площади 2 кв. м. мощностью 280 Вт. Также в продаже присутствуют бухты иных размеров. То же самое относится к инфракрасным электрическим теплым полам.

Теперь ознакомимся с требованиями к мощности. Если электрические теплые полы будут работать как основной источник тепла, рекомендованная мощность составит 180 Вт на 1 кв./м. Аналогичным образом высчитываем мощность для обогрева лоджий и балконов. Если полы будут выступать вспомогательным источником тепла, следует подбирать оборудование исходя из следующих требований:

  • Помещения, располагающиеся на первых этажах зданий (в том числе и частные дома) – 130-150 Вт на 1 кв./м;
  • Помещения, располагающиеся на следующих этажах – от 120 до 130 Вт на 1 кв. м;
  • Ванные комнаты – от 140 до 150 Вт на 1 кв. м.

Если в расчетах выйдет ошибка в большую сторону, то в этом нет ничего страшного – для этих целей в помещениях будут стоять терморегуляторы, которые будут поддерживать температуру на заданном уровне. Но делать гигантские запасы не стоит, так как это чревато лишними расходами.

Для проведения более точных расчетов используйте специальные калькуляторы, учитывающие тепловые потери и прочие параметры.

Управление через контроллер Arduino

Использование контроллеров себя оправдывает в домах, где предусматривается многофункциональное управление целыми группами отопительных систем. Программатор микроконтроллера Arduino является наиболее приемлемым для использования с бытовыми устройствами напольного обогрева. Посредством специальных настроек пользователь составляет алгоритм управления с учетом перечня входных показателей. В современных системах такого типа широко используются и возможности регуляции в удаленном режиме. Так, управление водяным теплым полом Arduino можно организовать через тот же смартфон, скачав соответствующее приложение для Android с графическим интерфейсом. В числе основных задач, которые можно решить посредством такого инструментария, следующие:

  • Установка температуры и ее регуляция.
  • Мониторинг данных, которые исходят от температурных датчиков.
  • Информирование о техническом состоянии системы.
  • Включение аварийных режимов с сигнализацией при обнаружении признаков утечки или нехарактерного изменения основных рабочих показателей.

Монтаж управляющего узла

Устройства регуляции желательно размещать как можно ближе к месту эксплуатации обогревательного трубопровода. Крепежные операции с помощью комплектного набора фиксаторов и монтажных панелей несложно выполнить без помощи специалистов, своими руками. Управление водяным теплым полом может осуществляться и от монтажного шкафа, и дистанционно. Поэтому важно заранее продумать наиболее удобные места установки с точки зрения доступа. При этом не рекомендуется монтировать узел с коллекторной группой прямо к несущим конструкциям, так как работа теплого пола способствует распространению вибраций и шума. Желательно крепить систему шурупами к установочной панели через демпферную прокладку, которая будет гасить колебания и звуковые эффекты.

Проверка системы на герметичность

Перед первым пуском напольного обогревателя в работу следует испытать его на герметичность, то есть наличие возможных протечек. Для этого необходимо порядка 5-10 мин удерживать систему под давлением, в 1,5 раза превышающим нормальные рабочие показатели. При этом максимальное значение не должно превышать 3 бара. Если за этот промежуток времени давление не превысит 0,2 бар, это значит, что в соединениях нет течи. В зависимости от опционала конкретной системы управления водяным теплым полом, о критических перепадах давления может сообщать и автоматика через специальные индикаторы. Причем функции оповещения допускают и возможность включения в общие сигнализационные комплексы дома.

Можно ли использовать теплый пол без терморегулятора

Использование теплого пола без терморегулятора однозначно не допускается! Почему? Давайте разберемся.

Что будет если подключить нагревательные элементы напрямую к электрической сети?

В случае подключения инфракрасной пленки напрямую к источнику питания, пленка будет непрерывно нагреваться, пока не достигнет максимальной температуры нагрева. В зависимости от модели и производителя, максимальная температура нагрева пленочного теплого пола может достигать 50 °С, 70 °С, 150 °С или иного значения. При плохом теплоотводе греющая пленка выйдет из строя и пострадает напольное покрытие.

Подключение саморегулирующихся пленок без терморегулятора

При подключении греющей пленки с эффектом саморегуляции напрямую к источнику питания, по мере нагрева ее мощность будет понижаться за счет увеличения сопротивления. Тем самым происходит защита пленки от локального перегрева при ухудшении теплоотдачи поверхностью пола.

Понизив свою мощность на 30% (Marpe Samreg PTC или Marpe Black Heat PTC 30%) или 50% (Marpe Samreg PTC+), пленка будет продолжать греться. Даже притом, что максимальная температура нагрева саморегулирующихся пленок ограничена и зачастую недостаточна для их выхода из строя, может пострадать напольное покрытие.

Зачем нужен терморегулятор?

Терморегулятор для теплого пола предназначен для отключения питания, подающегося на нагревательные элементы при достижении заданной температуры. Терморегулятор позволяет контролировать температуру в помещении, а при использовании терморегуляторов с датчиком температуры пола и воздуха предотвращает перегрев греющих элементов теплого пола и напольных покрытий.

Что происходит при перегреве

Давайте рассмотрим, что может произойти с различными напольными покрытиями при перегреве (указанные температуры приблизительны и зависят от модели и производителя, точные значения можно узнать из паспорта изделия или проконсультировавшись у продавца):

  • При нагреве свыше +30 °С ламинат может начать скрипеть, рассыхаться, выделять вредные для здоровья вещества.
  • При нагреве свыше +26 °С паркетная доска может начать скрипеть и деформироваться.
  • При нагреве свыше +27 °С натуральный линолеум может начать плавиться и рваться, а при +30 °С ПВХ линолеум начинает терять цвет, вспучиваться, идти волнами, выделять вредный для здоровья фенол.
  • При нагреве свыше +27 °С ковролин может начать расползаться и выгорать.

Таким образом, вне зависимости от типа теплого пола и используемого напольного покрытия, применение терморегулятора является обязательным!

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]