Максимально допустимая скорость воздуха в воздуховодах

Исходная информация для просчета

Всю вентиляционную систему раскладывают на отдельные участки и на каждом из них определяют оптимальную скорость воздушной смеси. Признак, по которому отличают один участок от другого, это количество воздуха (расход). Если данная величина неизменна, то раскладывать вентиляционную сеть трубопроводов на участки не требуется. Суть расчета сводится к следующему:

Расчет воздуховодов для равномерной раздачи воздуха.

  1. Определить расчетное значение скорости потока.
  2. Вычислить размеры воздуховодов круглой или прямоугольной формы, сравнить их с нормируемыми размерами по СНиП.
  3. Если габариты отличаются от нормируемых, взять ближайшее в ряду нормативное значение и произвести вычисления в обратном порядке для определения реальной скорости движения воздушных потоков.

Нормативный ряд диаметров в миллиметрах круглых каналов представлен в таблице:

505863718090100110125140160180
200224250280315355400450500560630710
8009001000112012501400160018002000224025002800

Нормативные требования к воздухопроводам прямоугольной формы несколько проще: соотношение высоты и ширины сторон канала не должно быть больше чем 6:3. На практике это означает, что нельзя изготавливать слишком узкие трубопроводы при большой ширине, такие как 700х100 мм. Такой канал будет иметь очень высокое сопротивление, а при его работе допустимый уровень шума будет превышен, поскольку слишком широкая часть начнет вибрировать от воздействия на нее воздушного потока изнутри. В этом случае соотношение будет равно 7, что не соответствует нормам, а канал 600х100 мм с соотношением сторон 6 нормативами допускается. Но даже в этом случае широкую сторону необходимо ужесточить, особенно при высокой скорости воздушных масс. Для этого на ней выполняют зиги либо диагональные перегибы с определенным шагом.

Значения параметров в различных видах воздушных каналов

В современных вентиляционных системах применяются установки, включающие в себя весь комплекс для подачи и обработки воздуха: очистка, нагревание, охлаждение, увлажнение, шумопоглощение. Эти установки называют центральными кондиционерами. Скорость потока внутри нее регламентируется заводом-производителем. Дело в том, что все элементы для обработки воздушных масс должны действовать в оптимальном режиме, чтобы обеспечить требуемые параметры воздуха. Поэтому производители изготавливают корпуса установок определенных размеров под заданный диапазон расходов воздуха, при которых все оборудование будет работать эффективно. Обычно значение скорости движения потока внутри центрального кондиционера лежит в пределах 1,5-3 м/с.

Каналы магистральные и ответвления

Следом наступает очередь главного магистрального воздуховода. Часто он имеет большую протяженность и проходит транзитом через несколько помещений, прежде чем начнет разветвляться. Рекомендуемая максимальная скорость 8 м/с в таких каналах может не соблюдаться, поскольку условия прокладки (особенно через перекрытия) могут существенно ограничивать пространство для его монтажа. Например, при расходе 35 000 м³/ч, что не редкость на предприятиях, и скорости 8 м/с диаметр трубы составит 1,25 м, а если ее увеличить до 13 м/с, то размер станет уже 1000 мм. Такое увеличение технически осуществимо, так как современные воздуховоды из оцинкованной стали, изготовленные спирально-навивным методом, имеют высокую жесткость и плотность. Это исключает их вибрацию на высоких скоростях. Уровень шума от такой работы достаточно низок, а на фоне звука от работающего оборудования может быть практически не слышен. В Таблице 2 представлены некоторые популярные диаметры магистральных воздухопроводов и их пропускная способность при разной скорости движения воздушных масс.

Таблица 2

Расход, м3/чØ400 ммØ450 ммØ500 ммØ560 ммØ630 ммØ710 ммØ800 ммØ900 ммØ1 м
ϑ = 8 м/с3617457656507087897111393144691831122608
ϑ = 9 м/с40695148635779741009312877162782060025434
ϑ = 10 м/с45215720706388591121414241180862288828260
ϑ = 11 м/с49746292776997451233515666198952517731086
ϑ = 12 м/с542668648476106311345717090217042746633912
ϑ = 13 м/с587874369182115171457818514235122975536738

Боковые ответвления воздухопроводов разводят подачу или вытяжку воздушной смеси по отдельным помещениям. Как правило, на каждом из них устанавливается диафрагма либо дроссель – клапан для регулировки количества воздуха. Эти элементы обладают немалым местным сопротивлением, поэтому сохранять высокую скорость нецелесообразно. Однако ее значение тоже может выходить за границы рекомендуемого диапазона, поэтому в Таблице 3 отражена пропускная способность воздуховодов самых популярных диаметров для ответвлений при различных скоростях.

Таблица 3

Расход, м3/чØ140 ммØ160 ммØ180 ммØ200 ммØ225 ммØ250 ммØ280 ммØ315 ммØ355 мм
ϑ = 4 м/с22028836645257270588511201424
ϑ = 4,5 м/с24832341150864379399412601601
ϑ = 5 м/с275360457565714882110714001780
ϑ = 5,5 м/с302395503621786968121515401957
ϑ = 6 м/с3304325486788571058132816802136
ϑ = 7 м/с38550464079110001235155019602492

Недалеко от места присоединения к магистрали в канале устраивают лючок, он нужен для замера скорости потока после монтажа и регулировки всей вентиляционной системы.

Каналы внутри помещений

Распределяющие каналы присоединяют основное ответвление к устройствам подачи или вытяжки воздуха из помещения: решеткам, распределительным или всасывающим панелям, диффузорам и прочим раздающим элементам. Скорости в этих отводах можно сохранять как в основном ответвлении, если мощность вентиляционного агрегата это позволяет, а можно и снизить до рекомендуемых. В таблице 4 можно увидеть расходы воздуха при различных скоростях и диаметрах каналов.

Таблица 4

Расход, м3/чØ100 ммØ112 ммØ125 ммØ140 ммØ160 ммØ180 ммØ200 ммØ225 мм
ϑ = 1,5 м/с42,450,765,882,6108137169214
ϑ = 2 м/с56,567,787,8110144183226286
ϑ = 2,5 м/с70,684,6110137180228282357
ϑ = 3 м/с84,8101132165216274339429
ϑ = 3,5 м/с99,9118153192251320395500
ϑ = 4 м/с113135175см. в Таблице 3

Скорости, рекомендуемые для вытяжных и приточных решеток, а также других воздухораспределяющих устройств, необходимо соблюдать.

Воздух на выходе из них или при всасывании встречает множество небольших преград и производит шум, превышать уровень которого недопустимо. Звук выходящего из решетки потока на большой скорости обязательно будет слышен. Еще один неприятный момент: сильная воздушная струя, попадая на людей, может привести к их заболеваниям.

Вентиляционные системы с естественным побуждением обычно применяются в жилых и общественных зданиях или же в административных корпусах промышленных предприятий. Это разного рода вытяжные шахты, находящиеся во внутренних перегородках помещений, или наружные вертикальные воздуховоды. Скорость движения воздушного потока в них невелика, редко достигает 2-3 м/с в тех случаях, когда шахта имеет значительную высоту и возникает хорошая тяга. Когда речь идет о небольших расходах (порядка 100-200 м³/ч), лучшего решения, чем естественная вытяжка, не найти. Ранее и по сей день в промышленных помещениях применяют крышные дефлекторы, работающие за счет ветровой нагрузки. Скорость воздуха в таких вытяжных устройствах зависит от силы ветрового потока и достигает 1-1,5 м/с.

Измерение параметров воздушного потока при наладке системы

После того как приточная или вытяжная вентиляционная система смонтирована, необходимо ее наладить. Для этого с помощью лючков на воздуховодах измеряют скорость движения потока на всех магистралях и ветках системы, после чего производят регулировку дроссель-клапанами либо воздушными заслонками. Именно скорость воздуха в каналах является определяющим параметром при наладке, через нее и диаметр высчитывают расход на каждом из участков. Приборы, которыми проводят данные замеры, называют анемометрами. Устройства бывают нескольких типов и работают по разным принципам, каждый тип предназначен для измерения определенного диапазона скоростей.

  1. Анемометры крыльчатого типа имеют небольшой вес, просты в обращении, но имеют некоторую погрешность измерений. Принцип работы – механический, диапазон измеряемых скоростей – от 0,2 до 5 м/с.
  2. Приборы чашечного типа тоже являются механическими, но диапазон проверяемых скоростей у них шире, от 1 до 20 м/с.
  3. Термоанемометры снимают показания не только скорости потока, но и его температуры. Принцип действия – электрический, от специального датчика, вносимого в воздушный поток, результаты выводятся на экран. Прибор работает от сети 220 В, времени на измерение требуется меньше, и погрешность у него невысокая. Существуют устройства, работающие от батареек, диапазоны проверяемых скоростей могут быть самые разные, в зависимости от типа прибора и завода-производителя.

Величина скорости движения воздушного потока, наряду с двумя другими параметрами, расходом и поперечным сечением канала, является одним из самых важных факторов работы вентиляционных систем любого назначения.

Этот параметр присутствует на всех этапах, начиная от расчета скорости воздуха в воздуховоде и заканчивая наладкой работы системы после ее монтажа и пуска.

Разнообразие вентиляционных систем

В настоящий момент строительная индустрия предлагает широкий ассортимент вентиляционных систем, предназначенных под любую площадь и назначение помещений. Главной их классификацией является разделение на приточные и вытяжные виды. В первом случае воздух попадает посредством воздуховодов внутрь помещения, где его давление растет. Вследствие этого процесса воздух выходит наружу через двери, окна и иные отверстия, которые находятся в данной комнате.

Приточная система имеет усложненный механизм: прежде, чем воздух попадает в помещение, он проходит воздухозаборную решетку и клапан и оказывается в фильтрующем элементе. После него направляется в нагреватель, а потом – в вентилятор. И только после этого этапа достигает финишной прямой. Такой вид вентиляционной системы приемлем для помещений с маленькой площадью.

Комбинированный вариант приточной и вытяжной систем считается наиболее эффективным способом вентиляции. Это обуславливается тем, что в помещении не задерживается надолго загрязненный воздух, и при этом поступает постоянно свежий. Стоит заметить, что диаметр воздуховода и его толщина напрямую зависят от желаемого вида вентиляционной системы так же, как и выбор его конструкции (обычная или гибкая).

По способу движения воздушных масс в помещении специалисты выделяют естественную и механическую системы вентиляции. Если в здании не используется механическое оборудование для поступления и очистки воздуха, то такой вид называется естественный. В этом случае зачастую отсутствуют воздуховоды. Наиболее оптимальный вариант – механическая система вентиляции, особенно, когда на улице безветренная погода. Такая система позволяет поступать воздуху в помещение и выходить из него посредством использования различных вентиляторов и фильтров. Также с помощью пульта ДУ можно настроить комфортные показатели температуры и давления внутри помещения.

Кроме вышеуказанных классификаций, различают вентиляционные системы общеобменного и местного вида. На производстве, где нет возможности устранять воздух из мест-источников загрязнения, применяется общеобменная вентиляция. Таким способом, вредные воздушные массы постоянно заменяются чистыми. Если же загрязненный воздух можно устранить возле источника его возникновения, то применяется вентиляция местного вида, которая чаще всего используется в домашних бытовых условиях.

Расчет по санитарно гигиеническим нормам

расчет вентиляции производственного помещения

При использовании санитарно гигиенических норм нужно использовать площадь всего здания. При этом для каждого квадратного метра приток должен составлять по 3 куб. м в течение часа.

Для получения суммарного притока за этот период, который необходимо обеспечить, нужно эту площадь умножить на три. Расчет вентиляции производственного помещения может производиться с использованием описанного здесь способа.

Расчёт системы вентиляции

Этот материал любезно предоставлен моим другом — Spirit’ом.

Согласно санитарным нормам, система вентиляции должна обеспечивать замену воздуха в помещении за один час, это значит что за час в помещение должен поступить и удалиться из него объём воздуха, равный объёму помещения. Поэтому первым шагом мы считаем этот объём, перемножив площадь помещения на высоту потолков. Если у вас допустим помещение площадью 40 м2 с высотой потолков 2.5м, то его объём будет 40*2.5=100 м3. Значит производительность приточной и вытяжной систем должны быть по 100 м3/ч. Это минимальный расход, я рекомендую вдвое больше. Ищете вентилятор с такой производительностью, а лучше ещё больше, потому что производительность указывается при условии отсутствия противодавления, а когда вы поставите в приточную систему фильтр, противодавление появится и уменьшит производительность. Если у вас производительность 200 м3/ч, то в трубе 125мм примерная скорость потока будет 4.5 м/с, в трубе 100 мм — 6.5 м/с, а в трубе 160мм – чуть меньше 3 м/с. Считается, что комфортная скорость воздуха для человека – до 2 м/с. Если у вас есть анемометр, то зная эти цифры вы можете проверить производительность системы вентиляции.

Далее, допустим вы хотите поставить в приточный канал нагреватель. С помощью четвёртой таблицы вы можете определить его мощность. Допустим на улице -10°С, а вам хочется чтобы в помещении было +20°С, значит разница температур 30°С. Находим строчку 200 м3/ч, смотрим пересечение столбца 30°С, получаем мощность 2010 Вт. Понятно, что это при отсутствии других источников тепла, так что в реале потребуется существенно меньше.

Следующий момент – расчёт влажности. В тёплом воздухе помещается больше воды, чем в холодном. Поэтому при нагревании его влажность уменьшается, а при охлаждении увеличивается. Допустим у нас за бортом -10°С при 80% влажности, а в помещении воздух нагревается до +20°С. Содержание воды в одном кубометре 2.1*0.8=1.68 г/м3, а влажность нагретого воздуха получится 1.68/17.3=0.097 то есть примерно 10%. Сколько же надо испарить воды, чтобы получить влажность, допустим, 50% при расходе 200 м3/ч?

Ответ: 200*(17.3*0.5-1.68)=1394 г/ч=1.4 кг/ч

Примеры расчетов объема воздухообмена

расчет объема воздухообмена

Далее приводится пример расчёта вентиляции исходя из кратности обмена. Для этого будет рассмотрен частный дом, имеющий такие помещения:

  • кухня — 19 кв. м;
  • гостиная — 41 кв. м;
  • санузел — 3 кв. м;
  • детская — 14 кв. м;
  • кабинет — 17 кв. м;
  • спальня — 22 кв. м;
  • ванная — 4 кв. м;
  • коридор — 6 кв. м.

В доме высота потолков составляет 3 м. Для расчёта нужно определить объём каждого помещения. При этом получим следующие значения:

  • кухня — 57 куб. м;
  • гостиная — 123 куб. м;
  • санузел — 9 куб. м;
  • детская — 42 куб. м;
  • кабинет — 51 куб. м;
  • спальня — 66 куб. м;
  • ванная — 12 куб. м;
  • коридор — 18 куб. м.

Используя таблицу значений кратности из нормативного документа проводится расчёт в соответствии с приведённой выше формулой:

  • кухня — 57 = 57 (19 кв. м х 3) — округляем до 60;
  • гостиная — 3 х 123 — округляем до 370;
  • санузел — 9 = 9 (3 кв. м х 3) — округляем до 10;
  • детская — 1 х 42 — округляем до 45;
  • кабинет — 1 х 51 — округляем до 55;
  • спальня — 1 х 66 — округляем до 70;
  • ванная — 12 = 12 (4 кв. м х 3) — округляем до 15;
  • коридор — 18 = 18 (6 кв. м х 3) — округляем до 20;

Технические расчеты бесплатно и анонимно =)

  • Отопление Расчет тепловой нагрузки по укрупненным показателям МДК 4-05.2004
  • Расчет диаметра коллектора
  • Расчет расширительного бака для отопления
  • Расчет количества ступеней теплообменника ГВС
  • Расчет нагрева ГВС
  • Расчет длины компенсаторов температурных удлинений трубопроводов
  • Расчет скорости воды в трубопроводе
  • Разбавление пропилен и этиленгликоля
  • Расчет диаметра балансировочной шайбы
  • Проверка работоспособности элеваторной системы отопления
  • кг/с в м3/ч. Перевод массового расхода среды в объемный.
  • Онлайн замена радиаторов Prado на Purmo
  • Примеры гидравлических расчетов систем отопления
  • Sanext Расчет диаметра и настройки клапана Sanext DPV
  • Расчет этажного коллектора системы отопления Sanext
  • Маркировка РКУ Sanext
  • Замена клапана Danfoss AB-QM на Sanext DS
  • Быстрая замена L и T-образных трубок на трубу Стабил
  • Вентиляция
      Расчет гравитационного давления
  • Расчет расхода воздуха на удаление теплоизбытков
  • Расчет теплоснабжения приточных установок
  • Расчет осушения помещений по методике Dantherm
  • Расчет эквивалентного диаметра и скорости воздуха в воздуховоде
  • Расчет дымоудаления с естественным побуждением
  • Расчет площади воздуховодов и фасонных частей онлайн
  • Расчет естественной вентиляции онлайн
  • Расчет потерь давления на местных сопротивлениях
  • Расчет воздушного отопления совмещенного с вентиляцией
  • Расчет вентиляции в аккумуляторной
  • Расчет температуры приточного и вытяжного воздуха системы вентиляции
  • Расчет углового коэффициента луча процесса
  • Кратности воздухообмена и температуры воздуха
  • Расчет количества облучателей-рециркуляторов медицинских по Р 3.5.1904-04
  • Кондиционирование
      Расчет мощности кондиционера по теплопритокам в помещение
  • Расчет теплопритоков от солнечной радиации. Инсоляция помещения.
  • Расчет теплопоступлений от источников искусственного освещения
  • Расчет теплопоступлений от оборудования
  • Расчет теплопоступлений от людей
  • Расчет теплопритоков и влаги от остывающей еды
  • Расчет теплопоступлений от инфильтрации воздуха
  • Расчет полной теплоты из явной теплоты
  • Водоснабжение
      Расчет сопротивления в трубопроводе ВК
  • Расчет глубины промерзания грунта
  • Расчетные расходы дождевых вод
  • Газоснабжение
      Технико-экономический расчет тепла и топлива
  • Расчет диаметра газопровода
  • Расчет теплотворной способности энергоносителей
  • Смета
      Расчет площади окраски металлического профиля
  • Расчет площади окраски чугунных радиаторов
  • Расчет расхода теплоизоляции с учетом коэффициента уплотнения
  • Расчет количества досок из кубометра древесины
  • Примеры смет Пример сметы на авторский надзор
  • Пример сметы на перебазирование техники
  • Пример расчета коэффициента к ФОТ при сверхурочной работе.
  • Пример расчета коэффициента к ФОТ при многосменном режиме работы.
  • Пример расчета коэффициента к ФОТ при вахтовом методе работы.
  • Списание материалов в строительстве. Пример формы отчета.
  • Списание материалов в строительстве. Пример формы ведомости.
  • Разные
      Конвертер технических величин
  • Проверка показаний теплосчетчика онлайн
  • Расчет категории склада для хранения муки
  • Линейная интерполяция онлайн
  • Онлайн расчет маржинальности и точки безубыточности
  • НДС калькулятор онлайн, расчет %
  • Юнит-экономика онлайн калькулятор
  • Онлайн калькулятор стоимости покупки автомобиля по зарплате и доходу семьи
  • Расчет стоимости системы учета энергоресурсов
  • Винный калькулятор
  • Закон Ома
  • Расчет фундамента
  • Статьи Нормы
  • Сравнение типов отопительных приборов
  • Настройка AutoCAD
  • Температура воздуха в Краснодаре за 10 лет зимой
  • Сравнение ИП с ООО
  • Вход
  • Типы и виды воздуховодов

    Перед расчетом сетей нужно определить из чего они будут изготовлены. Сейчас применяются изделия из стали, пластика, ткани, алюминиевой фольги и др. Часто воздуховоды изготовляют из оцинкованной или нержавеющей стали, это можно организовать даже в небольшом цеху. Такие изделия удобно монтировать и расчет такой вентиляции не вызывает проблем.

    Кроме этого, воздуховоды могут различаться по внешнему виду. Они могут быть квадратного, прямоугольного, овального сечения. Каждый тип обладает своими достоинствами. Прямоугольные позволяют сделать системы вентиляции небольшой высоты или ширины, с сохранением нужной площади сечения. В круглых системах меньше материала, овальные совмещают плюсы и минусы других видов.

    Для примера расчета вентиляции выберем круглые трубы из жести. Это изделия, которые используют для вентиляции жилья, офисных и торговых площадей. Расчет будем проводить одним из методов, который позволяет точно подобрать сеть воздуховодов и найти ее характеристики.

    Тонкости выбора воздуховода

    Зная результаты аэродинамических расчетов, можно правильно подобрать параметры воздуховодов, а точнее – диаметр круглых и габариты прямоугольных сечений.

    Кроме того, параллельно можно выбрать прибор принудительной подачи воздуха (вентилятор) и определить потери давления в процессе передвижения воздуха по каналу.

    Зная величину расхода воздуха и значение скорости его движения, можно определить, какого сечения воздуховоды потребуются.

    Для этого берется формула, обратная формуле для подсчета расхода воздуха: S = L/3600*V.

    Используя результат, можно посчитать диаметр:

    D = 1000*√(4*S/π)

    Где:

    • D — диаметр сечения воздуховода;
    • S — площадь сечения воздушных каналов (воздуховодов), (м²);
    • π — число «пи», математическая константа, равная 3,14;.

    Полученное число сопоставляют с заводскими стандартами, допущенными по ГОСТ, и выбирают наиболее близкие по диаметру изделия.

    Если необходимо выбрать прямоугольные, а не круглые воздуховоды, то следует вместо диаметра определить длину/ширину изделий.

    При выборе ориентируются на примерное сечение, используя принцип a*b ≈ S и таблицы типоразмеров, предоставленные заводами-изготовителями. Напоминаем, что по нормам отношение ширины (b) и длины (a) не должно превышать 1 к 3.

    Воздуховоды с прямоугольным или квадратным сечением имеют эргономичную форму, что позволяет устанавливать их впритык к стенам. Этим пользуются, обустраивая домашние вытяжки и маскируя трубы над потолочными навесными конструкциями или над кухонными шкафами (антресолями)

    Общепринятые стандарты прямоугольных каналов: минимальные размеры – 100 мм х 150 мм, максимальные – 2000 мм х 2000 мм. Круглые воздуховоды хороши тем, что обладают меньшим сопротивлением, соответственно, имеют минимальные показатели уровня шума.

    В последнее время специально для внутриквартирного применения выпускают удобные, безопасные и легкие пластиковые короба.

    Выбор приточной установки

    Для выбора приточной установки нам потребуются значения трех параметров: общей производительности, мощности калорифера и сопротивления воздухопроводной сети. Производительность и мощность калорифера мы уже рассчитали. Сопротивление сети можно найти с помощью Калькулятора или, при ручном расчете, принять равным типовому значению (см. раздел Расчет сопротивления сети).

    Для выбора подходящей модели нам нужно отобрать вентустановки, максимальная производительность которых несколько больше расчетного значения. После этого по вентиляционной характеристике мы определяем производительность системы при заданном сопротивлении сети. Если полученное значение будет несколько выше требуемой производительности вентиляционной системы, то выбранная модель нам подходит.

    Для примера проверим, подойдет ли вентустановка с приведенной на рисунке вентхарактеристикой для коттеджа площадью 200 м².

    Расчетное значение производительности — 450 м³/ч. Сопротивление сети примем равным 120 Па. Для определения фактической производительности мы должны провести горизонтальную линию от значения 120 Па, после чего от точки ее пересечения с графиком провести вниз вертикальную линию. Точка пересечения этой линии с осью «Производительность» и даст нам искомое значение — около 480 м³/ч, что немного больше расчетного значения. Таким образом, эта модель нам подходит.

    Заметим, что многие современные вентиляторы имеют пологие вентхарактеристики. Это означает, что возможные ошибки в определении сопротивления сети почти не влияют на фактическую производительность системы вентиляции. Если бы мы в нашем примере ошиблись при определении сопротивления воздухопроводной сети на 50 Па (то есть фактическое сопротивление сети было бы не 120, а 180 Па), производительность системы упала бы всего на 20 м³/ч до 460 м³/ч, что не повлияло бы на результат нашего выбора.

    После выбора приточной установки (или вентилятора, если используется наборная система) может оказаться, что ее фактическая производительность заметно больше расчетной, а предыдущая модель приточной установки не подходит, поскольку ее производительности недостаточно. В этом случае у нас есть несколько вариантов:

    1. Оставить все как есть, при этом фактическая производительность вентиляции будет выше расчетной. Это приведет к повышенному расходу энергии, затрачиваемой на нагрев воздуха в холодное время года.
    2. «Задушить» вентустановку с помощью балансировочных , закрывая их до тех пор, пока расход воздуха в каждом помещении не снизится до расчетного уровня. Это также приведет к перерасходу энергии (хотя и не такому большому, как в первом варианте), поскольку вентилятор будет работать с избыточной нагрузкой, преодолевая повышенное сопротивление сети.
    3. Не включать максимальную скорость. Это поможет в том случае, если вентустановка имеет 5–8 скоростей вентилятора (или плавную регулировку скорости). Однако большинство бюджетных вентустановок имеет только ступенчатую регулировку скорости, что, скорее всего, не позволит точно подобрать нужную производительность.
    4. Снизить максимальную производительность приточной установки точно до заданного уровня. Это возможно в том случае, если автоматика вентустановки позволяет настраивать максимальную скорость вращения вентилятора.

    Важность воздухообмена для человека

    По строительным и гигиеническим нормам, каждый жилой или производственный объект необходимо обеспечить системой вентиляции.

    Главное ее назначение – сохранение воздушного баланса, создание благоприятного для работы и отдыха микроклимата. Это значит, что в атмосфере, которой дышат люди, не должно наблюдаться переизбытка тепла, влаги, загрязнений различного рода.

    Нарушения в организации системы вентиляции приводят к развитию инфекционных болезней и заболеваний дыхательной системы, к снижению иммунитета, к преждевременной порче продуктов питания.

    В излишне влажной и теплой среде быстро развиваются болезнетворные микроорганизмы, на стенах, потолках и даже на мебели появляются очаги плесени и грибка.

    Схема вентиляции в двухэтажном частном доме. Вентиляционная система оборудована приточно-вытяжной энергосберегающей установкой с рекуператором теплоты, который позволяет повторно использовать тепло выводимого из здания воздуха

    Одним из условий сохранения здорового воздушного баланса является правильное проектирование системы вентиляции. Каждая часть воздухообменной сети должна быть подобрана, исходя из объемов помещения и характеристик воздуха в нем.

    Предположим, в небольшой квартире достаточно хорошо налаженной приточно-вытяжной вентиляции, тогда как в производственных цехах обязательна установка оборудования для принудительного воздухообмена.

    При строительстве домов, общественных учреждений, цехов предприятий руководствуются следующими принципами:

    • каждое помещение нужно обеспечить системой вентиляции;
    • необходимо соблюдать гигиенические параметры воздуха;
    • на предприятиях следует установить устройства, увеличивающие и регулирующие скорость воздухообмена; в жилых помещениях – кондиционеры или вентиляторы при условии недостаточной вентиляции;
    • в помещениях разного назначения (например, в палатах для больных и операционной или в офисе и в комнате для курения) необходимо оборудовать разные системы.

    Чтобы вентиляция соответствовала перечисленным условиям, нужно сделать расчеты и подобрать оборудование – приборы подачи воздуха и воздуховоды.

    Также при устройстве вентиляционной системы необходимо правильно выбирать места забора воздуха, чтобы не допустить поступления загрязненных потоков обратно в помещения.

    В процессе составления проекта вентиляции для частного дома, многоэтажного жилого здания или производственного помещения рассчитывают объем воздуха и намечают места монтажа вентиляционного оборудования: водухообменных установок, кондиционеров и воздуховодов

    От размеров воздуховодов (в том числе домовых шахт) зависит эффективность воздухообмена. Выясним, каковы нормы скорости потока воздуха в вентиляции, указанные в санитарной документации.

    Учреждения здравоохранения

    Наибольшие значения показатель кратности воздухообмена в учреждениях, относящихся к системе здравоохранения, имеет для палат, в которых производится стационарное лечение пациентов с обнаруженными патологиями инфекционного (160 м³/ч) и неинфекционного (80 м³/ч) происхождения.

    Согласно нормативам большая часть других помещений, включая кабинеты врачей и процедурные комнаты должна иметь кратность вытяжки при естественном типе организации воздухообмена, равную 1-2 ед/ч.

    Отдельным пунктом следует упомянуть организацию системы вентиляции операционных кабинетов. В них согласно современным требованиям должна использоваться 3 кратная система очистки воздуха, при этом работающие устройства должны обеспечивать минимальный приток 1200 м³ воздуха в час.

    Нужно ли ориентироваться на СНиП?

    Во всех расчетах, которые мы проводили, использовались рекомендации СНиП и МГСН. Эта нормативная документация позволяет определить минимально допустимую производительность вентиляции, обеспечивающую комфортное пребывание людей в помещении. Другими словами требования СНиП направлены в первую очередь на минимизацию стоимости системы вентиляции и затрат на ее эксплуатацию, что актуально при проектировании вентсистем для административных и общественных зданий.

    В квартирах и коттеджах ситуация иная, ведь вы проектируете вентиляцию для себя, а не для усредненного жителя и вас никто не заставляет придерживаться рекомендаций СНиП. По этой причине производительность системы может быть как выше расчетного значения (для большего комфорта), так и ниже (для уменьшения энергопотребления и стоимости системы). К тому же субъективное ощущение комфорта у всех разное: кому-то достаточно 30–40 м³/ч на человека, а для кого-то будет мало и 60 м³/ч.

    Однако если вы не знаете, какой воздухообмен вам нужен для комфортного самочувствия, лучше придерживаться рекомендаций СНиП. Поскольку современные приточные установки позволяют регулировать производительность с пульта управления, вы сможете найти компромисс между комфортом и экономией уже в процессе эксплуатации системы вентиляции.

    Правила использования измерительных устройств

    При измерении скорости потока воздуха и его расхода в системе вентиляции и кондиционирования нужен правильный подбор приборов и соблюдение следующих правил их эксплуатации.

    Это позволит получить точные результаты расчета воздуховода, а также составить объективную картину системы вентиляции.

    Соблюдайте режим температур, который обозначен в паспорте прибора. Также следите за положением сенсора зонда. Он должен быть всегда ориентирован точно навстречу потоку воздуха.

    Если не соблюдать это правило, результаты измерений будут искажены. Чем больше будет отклонение сенсора от идеального положения, тем выше будет погрешность.

    Правила определения скорости воздуха

    Скорость движения воздуха тесно взаимосвязана с такими понятиями, как уровень шума и уровень вибрации в вентиляционной системе. Проходящий по каналам воздух создает определенный шум и давление, которые возрастают с увеличением количества поворотов и изгибов.

    Чем больше сопротивление в трубах, тем ниже скорость воздуха и тем выше производительность вентилятора. Рассмотрим нормы сопутствующих факторов.

    №1 — санитарные нормы уровня шума

    Нормативы, указанные в СНиП, касаются помещений жилого (частных и многоквартирных домов), общественного и производственного типа.

    В таблице, представленной ниже, вы можете сравнить нормы для помещений различного типа, а также территорий, прилегающих к зданиям.

    Часть таблицы из №1 СНиП-2-77 из параграфа «Защита от шума». Максимально допустимые нормы, относящиеся к ночному времени, ниже дневных значений, а нормы для прилегающих территорий выше, чем для жилых помещений

    Одной из причин увеличения принятых норм как раз может быть неправильно спроектированная система воздуховодов.

    Уровни звукового давления представлены в другой таблице:

    При введении в эксплуатацию вентиляционного или другого оборудования, связанного с обеспечением благоприятного, здорового микроклимата в помещении, допускается лишь кратковременное превышение обозначенных параметров шума

    №2 — уровень вибрации

    Мощность работы вентиляторов напрямую связана с уровнем вибрации. Максимальный порог вибрации зависит от нескольких факторов:

    • размеров воздуховода;
    • качества прокладок, обеспечивающих снижение уровня вибрации;
    • материала изготовления труб;
    • скорости потока воздуха, проходящего по каналам.

    Нормы, которых стоит придерживаться при выборе вентиляционных устройств и при расчетах, касающихся воздуховодов, представлены в следующей таблице:

    Предельно допустимые значения локальной вибрации. Если при проверке реальные показатели выше норм, значит, система воздуховодов спроектирована с техническими недочетами, которые необходимо исправить, или мощность вентилятора слишком велика

    Скорость воздуха в шахтах и каналах не должна влиять на увеличение показателей вибрации, как и на связанные с ними параметры звуковых колебаний.

    №3 — кратность воздухообмена

    Очистка воздуха происходит благодаря процессу воздухообмена, который подразделяется на естественный или принудительный.

    В первом случае он осуществляется при открывании дверей, фрамуг, форточек, окон (и называется аэрацией) или просто путем инфильтрации через щели на стыках стен, дверей и окон, во втором – с помощью кондиционеров и вентиляционного оборудования.

    Смена воздуха в комнате, подсобном помещении или цеху должна происходить несколько раз в час, чтобы степень загрязнения воздушных масс была допустимой.

    Количество смен – это кратность, величина, также необходимая для определения скорости воздуха в вентканалах.

    Кратность вычисляют по следующей формуле:

    N=V/W

    Где:

    • N – кратность воздухообмена, раз в 1 час;
    • V – объем чистого воздуха, заполняющего помещение за 1 ч, м³/ч;
    • W – объем помещения, м³.

    Чтобы не выполнять дополнительные расчеты, средние показатели кратности собраны в таблицы.

    Например, для жилых помещений подходит следующая таблица кратности воздухообмена:

    Судя по таблице, частая смена воздушных масс в помещении необходима, если ему характерна высокая влажность или температура воздуха – например, в кухне или санузле. Соответственно, при недостаточной естественной вентиляции в данных помещениях устанавливают приборы принудительной циркуляции

    Что случится, если нормативы кратности воздухообмена не будут соблюдаться или будут, но в недостаточной степени?

    Произойдет одно из двух:

    Кратность ниже нормы. Свежий воздух прекращает замещать загрязненный, вследствие чего в помещении увеличивается концентрация вредных веществ: бактерий, болезнетворных микроорганизмов, опасных газов

    Количество кислорода, важного для дыхательной системы человека, уменьшается, а углекислого газа, напротив, увеличивается. Влажность повышается до максимума, что чревато появлением плесени.

    Кратность выше нормы

    Возникает, если скорость перемещения воздуха в каналах превышает норму. Это негативно влияет на температурный режим: помещение просто не успевает нагреваться. Излишне сухой воздух провоцирует болезни кожи и дыхательного аппарата.

    Чтобы кратность обмена воздуха соответствовала санитарным нормам, следует установить, убрать или отрегулировать вентиляционные приборы, а при необходимости и заменить воздуховоды.

    Расчет приточно вытяжной вентиляции

    После того, как были определены потребности в свежем воздухе и производительность вентсистемы, переходите к проекту распределения воздуха по квартире или зданию. Состоит она из: воздуховода, разнообразных фасонных изделий, распределителей воздуха (решеток) и дроссель — клапанов. Перед тем, как рассчитать вентиляцию, нужно начертить схему будущего воздуховода таким образом, чтобы длина его была минимальной, а производительность достаточной.

    Выберите, какое сечение воздуховода будет для вас более оптимальным — круглое или прямоугольное. У первого меньше высота, что позволяет экономить запотолочное пространство, а второй более прост в монтаже. Нужно учесть, что скорость воздушного потока должна ограничиваться 3-4 метрами в секунду. Если она будет больше — возникнет сильный шум.

    Требуемую расчетную площадь сечения у воздуховода рассчитывают так:

    Sc (площадь сечения) = L (расходу воздуха) помноженному на 2.778 (общепринятый коэффициент разных размерностей) и разделенному на V (скорость прохождения воздуха по воздуховоду).

    Результат получится в сантиметрах квадратных для большего удобства.

    У круглых воздухоотводов она считается так- S = tt умножить на D / 400

    У прямоугольных S= A умножить на B /100.

    S фактическая площадь, D диаметр,A и B ширина и высота.

    Считать эти показатели нужно для каждой ветки воздуховода. Для бытовых инженерных сетей выбирают круглые воздухоотводы от 100 до 250 мм, если ваш выбор — прямоугольные изделия, их диаметр должен быть полностью эквивалентным.

    КАКОЙ ВЫСОТЫ ДОЛЖНА БЫТЬ ВЕНТИЛЯЦИОННАЯ ТРУБА

    1. Высота вентиляционной трубы над крышей, расположенной рядом с дымовой трубой, должна быть равной этой трубе.

    2. Над плоской кровлей труба должна возвышаться на высоту не менее 500 миллиметров.

    3. Если труба расположена на расстоянии не больше полутора метров от парапета, либо от конька, ее высота над коньком кровли должна быть больше 500 миллиметров.

    4. В случае если труба находится от парапета или от конька на расстояния 1,5-3 метра ее высота должна быть не ниже конька кровли.

    5. Вентиляционная труба, находящаяся от конька на расстоянии больше чем три метра, должна быть высотой не ниже линии, ориентировочно проведенной по направлению вниз от конька крыши по направлению к линии горизонта. Данную линию необходимо проводить под углом в 10 градусов.

    Несколько полезных советов и замечаний

    • не возникнет потерь или необходимости в прокладке дополнительного вентиляционного трубопровода для обеспечения необходимого расхода воздуха, если габариты помещения не позволяют провести каналы больших размеров;
    • можно прокладывать трубопроводы меньших размеров, что в большинстве случаев проще и удобней;
    • чем меньше диаметр канала, тем дешевле его стоимость, снизится цена и на доборные элементы (заслонки, клапаны);
    • меньший размер труб расширяет возможности монтажа, их можно расположить так, как нужно, практически не подстраиваясь под внешние стесняющие факторы.

    Однако при прокладке воздуховодов меньшего диаметра необходимо помнить, что при повышении скорости воздуха повышается динамическое давление на стенки труб, увеличивается и сопротивление системы, соответственно потребуется более мощный вентилятор и дополнительные расходы. Поэтому до монтажа необходимо тщательно провести все расчеты, чтобы экономия не обернулась большими затратами или даже убытками, т.к. постройку, не соответствующую нормам СНиП могут не допустить до эксплуатации.

    МЕТОДЫ РАСЧЕТА ПОТЕРЬ ДАВЛЕНИЯ В ВЕНТИЛЯЦИОННОЙ ТРУБЕ

    Помимо высоты трубы также производится расчет потерь давления, происходящих в воздуховоде. Для расчета используется сразу несколько формул:
    Задача вентиляции – это вывод из помещения старого спертого воздуха и обязательная замена его на свежий уличный воздух. Только полноценная вентиляция способна обеспечить создание и поддержание в комнатах благоприятной для человеческого организма атмосферы. Думая о том, как рассчитать вентиляцию в помещении, необходимо понимать, что помимо своего основного предназначения, она является залогом сохранения сухости для конструкций дома. Именно правильная работа этой системы не позволит гнили и плесени образоваться на поверхности стен даже в помещениях с высокой влажностью.

    Грамотно спроектированная вентиляция является обязательным условием для создания оптимального микроклимата в любом современном доме. Централизованное отопление, оборудование против сквозняков, тщательная теплоизоляция – все это требует скрупулезного подхода к проектированию вентиляционной системы. Отсутствие постоянного воздухообмена приводит к возникновению духоты. В свою очередь, высокие показатели влаги в помещении приводят к возникновению конденсата.

    Чтобы максимально правильно рассчитать вентиляцию, можно взять за пример естественную конвекцию, работающую в целях вывода из помещений неприятных ароматов и воздуха с высокой влажностью. Естественная конвекция осуществляет поставку теплых воздухослоев из дома в его крышу. Для такого провода используются трубы воздуховода, по которым потоки направляются через коньковые вентиляционные элементы, а затем выводятся наружу. Этот тип вентиляции относится к саморегулирующим типам. В нем отсутствуют вентиляторы, что избавляет от необходимости пользоваться электроэнергией.

    Вентиляция в помещении должна быть обязательно. При этом современные технические конструкции, включающие в себя очистку воздуха от почти всех уличных загрязнений, не так полезны, как могут показаться на первый взгляд. Они способны настолько очистить уличный воздух, что он становится абсолютно искусственным, и теряет свои природные свойства и характеристики. Именно поэтому выбор места проживания является основополагающим для создания в доме или квартире здоровой атмосферы. Чистый воздух снаружи обеспечивает наличие чистого естественного воздуха внутри и исключает необходимость использования в системах вентиляционных конструкций мощных воздухоочистительных приборов.

    Рейтинг
    ( 1 оценка, среднее 4 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]